Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T14:27:43.268Z Has data issue: false hasContentIssue false

Mbe Growth and Characterization of Hgcdte Heterostructures

Published online by Cambridge University Press:  28 February 2011

R.J. Koestner
Affiliation:
Texas Instruments, Inc., Central Research Laboratories, Dallas, Tx 75265
M.W. Goodwin
Affiliation:
Texas Instruments, Inc., Central Research Laboratories, Dallas, Tx 75265
H.F. Schaake
Affiliation:
Texas Instruments, Inc., Central Research Laboratories, Dallas, Tx 75265
Get access

Abstract

HgCdTe heterostructures consisting of a thin n-type widegap (250 meV or 5 μm cutoff) layer deposited on an n-type narrowgap (100-125 meV or 10-13 μm cutoff) layer offer the promise of very high performance metal-insulator-semiconductor (MIS) photocapacitors for long wavelength infrared (LWIR) detection. Molecular Beam Epitaxy (MBE) is a candidate growth technology for these two layer films due to its fine control in composition, thickness and doping concentration. The critical materials issues are reducing the defect content associated with twins in the grown layers, achieving low net donor concentrations in the widegap layer, and avoiding the formation of misfit dislocations at the HgCdTe heterointerface. This paper will report on our recent progress in these directions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Geiss, J., Gough, J.S., Irvine, S.J.C., Mullin, J.B., and Blackmore, G.W., Mater.Res. Soc.Symp. 90, (1987) 389.Google Scholar
[2] Feldman, R.D., Nakahara, S., Austin, R.F., Boone, T., Opila, R.L. and Wynn, A.S., Appl.Phys.Lett. 51, 1239 (1987).Google Scholar
[3] Arias, J.M., Shin, S.H., Pasko, J.G. and Gertner, E.R., Appl.Phys.Lett. 52, 39 (1988).Google Scholar
[4] Koestner, R.J. and Schaake, H.F., J.Vac.Sci.Technol. A6, 2834 (1988).Google Scholar
[5] Million, A., DiCioccio, L., Gailliard, J.P. and Piaguet, J., J.Vac.Sci. Technol. A6, 2813 (1988).Google Scholar
[6] Ven, J. van de, Weyher, J.L., Ikink, H. and Giling, L.J., J.Electrochem Soc. 134, 989 (1987).Google Scholar
[7] Schaake, H.F., Tregilgas, J.H., Lewis, A.J. and Everett, P.M., J.Vac.Sci. Technol. Al (3), (1983) 1625.Google Scholar
[8] Weng, S.-L., J.Vac.Sci.Technol. B5, 725 (1987).Google Scholar
[9] Schlom, D.G., Lee, W.S., Ma, T. and Harris, J.S. Jr., J.Vac.Sci.Technol. B7, 296 (1989).Google Scholar
[10] Harris, K.A., Myers, T.H., Yanka, R.W., Mohnkemr, L.M. Green, R.W. and Otsuka, N., J.Vac.Sci.Technol. A8, 1013 (1990).Google Scholar
[11] Koestner, R.J. and Schaake, H.F., Mat.Res.Soc.Symp. 90, 312 (1987).Google Scholar
[12] Faurie, J.P., HgCdTe MBE miniworkshop, Washington, D.C., November 1987.Google Scholar
[13] Arias, J.M., Shin, S.H., Pasko, J.G., DeWames, R.E. and Gertner, E.R., J.Appl. Phys. 65, 1747 (1989).Google Scholar
[14] Faurie, J.P., Million, A., Boch, R. and Tissot, J.L., J.Vac.Sci.Technol. Al, 1593 (1983).Google Scholar
[15] Myers, T.H., Yanka, R.W., Harris, K.A., Reisinger, A.R., Han, J., Hwang, S., Yang, Z., Giles, N.C., Cook, J.W. Jr., Schetzina, J.F., Green, R.W. and McDevitt, S., J.Vac.Sci.Technol. A7, 300 (1989).Google Scholar
[16] Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S. and Robinson, I.K., J.Vac.Sci. Technol. A2, 436 (1984).Google Scholar
[17] Orders, P.J. and Ushers, B.F., Appl.Phys.Lett. 50, 980 (1987).10.1063/1.98004Google Scholar
[18] Hanlon, T.R., Koestner, R.J. and Liu, H.-Y., Appl.Phys.Lett. 55, 1513 (1989).Google Scholar
[19] Bartels, W.J. and Nijman, W., J.Cryst.Growth 44, 518 (1978).Google Scholar
[20] Hornstra, J. and Bartels, W.J., J.Cryst.Growth 44, 513 (1978).Google Scholar
[21] Matthews, J.W. and Blakeslee, A.E., J.Cryst.Growth 27, 118 (1974).Google Scholar