Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T16:42:12.567Z Has data issue: false hasContentIssue false

Mathematical modeling of the fluid flow in a mixing device for melting/dissolving solid particles in a liquid alloy

Published online by Cambridge University Press:  30 July 2014

J. A. Delgado-Álvarez
Affiliation:
Facultad de Química, UNAM, Departamento de Ingeniería Metalúrgica. Edificio “D” Circuito de los Institutos s/n, Col. Cd. Universitaria, C.P. 04510 México D.F., México.
J. G. Perea-Zurita
Affiliation:
Facultad de Química, UNAM, Departamento de Ingeniería Metalúrgica. Edificio “D” Circuito de los Institutos s/n, Col. Cd. Universitaria, C.P. 04510 México D.F., México.
A. Antonio-Morales
Affiliation:
Facultad de Química, UNAM, Departamento de Ingeniería Metalúrgica. Edificio “D” Circuito de los Institutos s/n, Col. Cd. Universitaria, C.P. 04510 México D.F., México.
C. González-Rivera
Affiliation:
Facultad de Química, UNAM, Departamento de Ingeniería Metalúrgica. Edificio “D” Circuito de los Institutos s/n, Col. Cd. Universitaria, C.P. 04510 México D.F., México.
M. A. Ramírez-Argáez
Affiliation:
Facultad de Química, UNAM, Departamento de Ingeniería Metalúrgica. Edificio “D” Circuito de los Institutos s/n, Col. Cd. Universitaria, C.P. 04510 México D.F., México.
Get access

Abstract

A study of the fluid flow in a mixing device proposed to dissolve alloying elements in iron baths is performed through a mathematical model in order to predict the best operating conditions for a proper melting/dissolution of solid alloying particles. The mathematical model consists in the mass and momentum conservation equations (continuity and Turbulent Navier-Stokes equations), and the standard two k-epsilon turbulence model. The model is numerically solved in transient regime with the Volume of Fluid algorithm (VOF) to calculate the vortex shape. VOF is built-in the CFD (Computational Fluid Dynamics) software ANSYS FLUENT 14. A flow of metal enters tangentially in the mixing chamber of the proposed mixing device (taken from an open patent) to generate a vortex. The shape and height of the vortex reached in this chamber depends on several design variables, but in this work only the presence or absence of a barrier in the device is analyzed. Results are obtained on the vortex sizes and shapes, liquid flow patterns, turbulent structure, residence times of the particles of alloying elements added to the melt and mixing times (Residence time distribution curves) of two devices: one with a barrier and the other without this barrier. It is found that the presence of the barrier in the device increases turbulence, destroys the vortex, decreases the residence time of the particles, and decreases the volume of fluid in the device. Most of the features of the barrier are detrimental for mixing and inhibits melting/dissolution of the alloying elements. Then, it is suggested a device without the presence of barrier for better performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sato, A.N.R., Yoshimatsu, S., Fukuzawa, A. and Ozaki, T., Tetsuto-Hagané, 65, 33(1683).Google Scholar
Ramirez-Argaez, M. A., Conejo, A.N., González, O. J. P. and Guzmán, Y, I.C., Arch Metall Mater, 53, 341 (2008).Google Scholar
Cole, G., Kovacs, B. V. and Sensoli, R. A., U.S. Patent No. 4 054 275 (1977).Google Scholar
Hirotoshi, T., U.S. Patent No. 4 484 731 (1984).Google Scholar
Hirotoshi, T., U.S. Patent No. 4 517 019 (1985).Google Scholar
Toyo-o, M., Masao, K., Mazumi, N. and Nobuyuki, F., U.S. Patent No. 4 723 762 (1988).Google Scholar
Lott, W. G., U.S. Patent No. 6 796 704 (2004).Google Scholar
Szekely, J., Fluid Flow Phenomena in Metal Processing, Edited by Academic Press (New York, 1979), p. 304.Google Scholar
Fluent Documentation, Chapter 6 “Boundary Conditions”, Section 6.4, Velocity Inlet Boundary Condition (2009).Google Scholar
Sahai, Y. and Emi, T., ISIJ International, 36, 667 (1996).CrossRefGoogle Scholar