Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T06:14:28.518Z Has data issue: false hasContentIssue false

Materials With Open Crystal Structure as Prospective Novel Thermoelectrics

Published online by Cambridge University Press:  10 February 2011

Ctirad Uher
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109, cuher@umich.edu
Jihui Yang
Affiliation:
also at Physics & Physical Chemistry Department, General Motors Research and Development Center, Warren, MI 48090-9055
Siqing Hu
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109, cuher@umich.edu
Get access

Abstract

A useful approach to identify materials with high thermoelectric figure of merit is to search for solids that offer great flexibility to modify and tailor the structure so as to achieve the optimal transport behavior. Among the most promising novel thermoelectric materials are solids with “open crystal structure”. They may be typified by structures with unfilled cages, crystals with an empty atomic sublattice, and by a network of polyhedral cages enclosing guest species. In this paper we present our latest results concerning transport properties in the above classes of solids. Specifically, we focus on the filled skutterudites, half-Heusler alloys, and clathrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Slack, G.A., in CRC Handbook of Thermoelectrics, Chapter 34, edited by Rowe, D. M., Chemical Rubber, Boca Raton, FL, 1995, p. 407.Google Scholar
2. Fleurial, J.-P., Caillat, T., Borshchevsky, A., Morelli, D. T., and Meisner, G. P., in Proceedings of the 15th International Conference on Thermoelectrics, edited by T. Caillat (Institute of Electrical and Electronics Engineering, Piscataway, NJ, 1996), p. 91.Google Scholar
3. Morelli, D. T., Caillat, T., Fleurial, J.-P., Borshchevsky, A., Vandersande, J., Chen, B., and Uher, C., Phys. Rev. B51, p. 9622 (1995).CrossRefGoogle Scholar
4. Slack, G. A. and Tsoukala, V. G., J. Appl. Phys. 76, p. 1665 (1994).CrossRefGoogle Scholar
5. Sales, B. C., Mandrus, D., and Williams, R. K., Science 272, p. 1325 (1996).CrossRefGoogle Scholar
6. Chen, B., Xu, J.-H., Uher, C., Morelli, D. T., Meisner, G. P., Fleurial, J.-P., Caillat, T., and Borshchevsky, Phys. Rev. B 55, p. 1476 (1997).CrossRefGoogle Scholar
7. Nolas, G. S., Cohn, J. L., and Slack, G. A., Phys. Rev. B 58, p. 164 (1998).CrossRefGoogle Scholar
8. Meisner, G. P., Morelli, D. T., Hu, S., Yang, J., and Uher, C., Phys. Rev. Letters 80, p. 3551 (1998).CrossRefGoogle Scholar
9. Ogijt, S. and Rabe, K. M., Phys. Rev. B 51, p. 10443 (1995).Google Scholar
10. Cook, B. A., Harringa, J. L., Tan, Z. S., and Jesser, W. A., Proc. 15th International Conference on Thermoelectrics, Pasadena, CA, IEEE Catalog Number 96TH 8169, p. 122 (1996).Google Scholar
11. Uher, C., Hu, S., Yang, J., Meisner, G. P., and Morelli, D. T., Proc. 16th International Conference on Thermoelectrics, Dresden, Germany, IEEE Catalog Number 97THt829 1, p. 485 (1997).Google Scholar
12. Uher, C., Yang, J., Hu, S., Morelli, D. T., and Meisner, G. P., Phys. Rev. B, submitted for publication.Google Scholar
13. Pauling, L. and Marsh, R., Proc. Nat. Acad. Sci. 38, p. 112 (1952).CrossRefGoogle Scholar
14. Cros, C., Pouchard, M., and Hagenmuller, P., Compt. Rend. 260, p. 4764 (1965).Google Scholar
15. Adams, G. B., O'Keeffe, M., Demkov, A. A., Sankey, O. F., and Huang, Y.-M., Phys. Rev. B 49, p. 8048 (1994).CrossRefGoogle Scholar
16. Tse, J. S. and White, M. A., J. Phys. Chem. 92, p. 5006 (1988).CrossRefGoogle Scholar
17. Zakrzewski, M. and White, M. A., Phys. Rev. B 45, p. 2809 (1992).CrossRefGoogle Scholar
18. Cros, C., Pouchard, M., and Hagenmuller, P., J. Solid State Chem. 2, p. 570 (1970).CrossRefGoogle Scholar
19. Eisenmann, B., Schdfer, H., and Zagler, R., J. Less-Common Metals 118, p. 43 (1986).CrossRefGoogle Scholar
20. Nolas, G. S., Cohn, J. L., Slack, G. A., and Schulman, S. B., Appl. Phys. Lett. 73, p. 178 (1998).CrossRefGoogle Scholar
21. Tse, J. S., Shpakov, V. P., Murashov, V. V., and Belosludov, V. R., J. Chem. Phys. 107, p. 9271 (1997).CrossRefGoogle Scholar