Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T21:13:27.128Z Has data issue: false hasContentIssue false

Materials For Monolithic Silicon Microphotonics

Published online by Cambridge University Press:  10 February 2011

L. M. Giovane
Affiliation:
Materials Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139, lckim@mit.edu
D. R. Lim
Affiliation:
Materials Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139, lckim@mit.edu
S. H. Ahn
Affiliation:
Materials Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139, lckim@mit.edu
T. D. Chen
Affiliation:
Materials Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139, lckim@mit.edu
J. S. Foresi
Affiliation:
Materials Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139, lckim@mit.edu
L. Liao
Affiliation:
Materials Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139, lckim@mit.edu
E. J. Oulette
Affiliation:
Materials Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139, lckim@mit.edu
A. M. Agarwal
Affiliation:
Materials Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139, lckim@mit.edu
X. Duan
Affiliation:
Materials Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139, lckim@mit.edu
J. Michel
Affiliation:
Materials Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139, lckim@mit.edu
A. Thilderkvist
Affiliation:
Materials Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139, lckim@mit.edu
L. C. Kimerling
Affiliation:
Materials Processing Center, Massachusetts Institute of Technology, Cambridge, MA 02139, lckim@mit.edu
Get access

Abstract

The path for silicon materials development has been charted. By the year 2010 we will have fabricated integrated circuit chips containing 109 transistors with 40 Å thick gate oxides and 1000 Å minimum feature sizes running at 4 GHz clock speeds. It is conceivable that incremental advances on the current chip architecture will satisfy the required materials and process improvements. The interconnection problem is the only challenge without a proposed solution. The signal propagation delay between devices is now longer than the individual device gate delay. The resistance and capacitance associated with fine line Al interconnects limit speed and increase power consumption and crosstalk. High power line drivers are limited by the reliability constraint of electromigration. There is no current paradigm for 4 GHz, electronic clock distribution. Optical interconnection can remove the electronic transmission bandwidth limit. The main challenge is development of a silicon-compatible, microphotonic technology.

Rare earth doping has provided a means of sharp-line electroluminescence from silicon at λ = 1.54 μm. Silicon's high index of refraction and low absorption in the near infrared yield an ideal optical waveguide. As with microelectronics, the silicon / silicon-dioxide materials system allows high levels of integration and functionality. The applications of silicon materials to light emission (Si:Er), optical waveguides (Si/SiO2), photonic switching (Si/SiO2) and photon detection (SiGe) are reviewed. These developments are discussed in the context of systems applications to communications and computation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. “Light emission from silicon”, Kimerling, L.C., Kolenbrander, K.D., Michel, J., Palm, J., and Giovane, L., Solid State Physics 50, 333 (1996).Google Scholar
2. “The mechanisms of electronic excitation of rare earth impurities in semiconductors”, Yassievich, I.N. and Kimerling, L.C., Semicond. Sci. Technol. 7, 1 (1993).Google Scholar
3. “Erbium in silicon”, Michel, J., Assali, L.V.C., Morse, M.T., and Kimerling, L.C., Semiconductors and Semimetals, 49, 111, (1998).Google Scholar
4. “Electroluminescence of erbium-doped silicon”, Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L.C., Physical Review B, 54, 603, (1996).Google Scholar
5. “Erbium-doped glasses for fiber amplifiers at 1500nm”, Miniscalco, W.J., J. Lightwave Tech., 9 234 (1991).Google Scholar
6. “Electronic structure of erbium centers in silicon”, Gan, F., Assali, L.V.C., and Kimerling, L.C., Materials Science Forum, 197, 579 (1995).Google Scholar
7. “Electrical study of crystalline silicon coimplanted with erbium and oxygen”, Ahn, S. H., Palm, J., Zheng, B., Duan, X., Agarwal, A., Nelson, S. F., Michel, J., Kimerling, L.C., SPIE 3007, 144 (1997).Google Scholar
8. “On the electroluminescence of erbium doped silicon”, Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L.C., Physical Review, B54, 17603 (1996).Google Scholar
9. “Room temperature sharp line electroluminescence λ = 1.54 μm from an erbium-doped, silicon light-emitting diode”, Zheng, B., Michel, J., Ren, F.Y.G., Jacobson, D.C., Poate, J.M., and Kimerling, L.C., Appl. Phys. Lett., 64, 2842 (1994).Google Scholar
10. “Erbium-doped silicon for light emitting devices”, Michel, J., Zheng, B., Palm, J., Ouellette, E., Gan, F., and Kimerling, L.C., Materials Research Society Symposium Proceedings, 442, 317 (1996).Google Scholar
11. “Defects in erbium/oxygen implanted silicon”, Duan, X., Palm, J., Zheng, B., Morse, M., Michel, J. and Kimerling, L.C., Defects in Electronic Materials II, Symposium, 249, (1996).Google Scholar
12. “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes”, Franzo, G., Coffa, S., Priolo, F. and Spinella, C., J. Appl. Phys. 81 (6), 2784 (1997).Google Scholar
13. “Electroluminescence of erbium-oxygen-doped silicon diodes grown by molecular beam epitaxy”, Stimmer, J., Reittinger, A., Nutzel, J., Absteiter, G., Holzbrecher, H. and Buchal, C., Appl. Phys. Lett. 68, 3290, (1996).Google Scholar
14. “Growth conditions of erbium-oxygen-doped silicon grown by MBE”, Stimmer, J., Reittinger, A., Absteiter, G., Holzbrecher, H. and Buchal, C., MRS, Rare Earth Doped Semiconductors II Symposium, 15 (1996).Google Scholar
15. “Losses in polycrystalline silicon waveguides”, Foresi, J., Black, M.R., Agarwal, A.M., and Kimerling, L.C., Appl. Phys. Lett. 68, 2052 (1996).Google Scholar
16. “Low-loss polycrystalline silicon waveguides for silicon photonics”, Agarwal, A.M., Black, M., Foresi, J., Liao, L., Duan, X., and Kimerling, L.C., J. Appl. Phys., 80, 6120, (1996).Google Scholar
17. “Simulation of single mode silicon waveguides and electro-optic coupling modulators”, Thesis, S.B., Lim, D.R., (1994).Google Scholar
18. “Optical waveguides in SIMOX structures”, Weiss, B. L., Reed, G.T., Toh, S. K., Soref, R. A. and Namavar, F., IEEE Photonics Technol. Lett. 3, 19, (1991).Google Scholar
19. “Low loss single mode optical waveguides with large cross-section in silicon on insulator”, Schmidten, J., Splett, A., Schuppert, B., and Petermann, K, Burbach, G., Electron. Lett. 27, 1486, (1991).Google Scholar
20. “Buried-oxide silicon on insulator structure I. Optical waveguide characteristics”, Emmons, R. M., Kurdi, B. N., and Hall, D. G., IEEE J. Quantum Electron., 28, 1486 (1992).Google Scholar
21. “Low loss planar optical waveguides fabricated in SIMOX material”, Rickman, A. Reed, G.T., Weiss, B. L. and Namavar, F., IEEE Photonics Tech. Lett. 4, 633, (1992).Google Scholar
22. “Light waves in thin films and integrated optics”, Tien, P.K., Applied Optics, 10, 2395 (1971).Google Scholar
23. “Low optical loss polycrystalline silicon waveguides by annealing and hydrogenation”, Liao, L, Lim, D.R., Agarwal, A.M., Kimerling, L.C., to be published, (1998).Google Scholar
24. “Small radius bends and large angle splitters in SOI waveguides”, Foresi, J.S., Lim, D.R., Argawal, A.M., and Kimerling, L.C., SPIE 3007, 112, (1997).Google Scholar
25. “Silicon-based monolithic and hybrid optoelectronic devices”, Zinke, T., Fischer, U., Schuppert, T. and Petermann, K., SPIE 3007, 30, (1997).Google Scholar
26. “Ultra-compact Si/Si02 microring resonator optical channel dropping filters”, Little, B.E., Foresi, J.S., Steinmeyer, G., Thoen, E.R., Chu, S.T., Haus, H.A., Ippen, E.P., Kimerling, L.C. and Greene, W., submitted to Phot. Tech. Lett., (1997).Google Scholar
27. “Photonic-bandgap microcavities in optical waveguides”, Foresi, J.S., Villeneuve, P.R., Ferrera, J., Theon, E.R., Steinmeyer, G., Fan, S., Joannopoulos, J.D., Kimerling, L.C., Smith, H.I. and Ippen, E.P., Nature, 390, 143 (1997).Google Scholar
28. “High efficiency silicon germanium photodetectors at λ=1.3-1.55 μm by strain and composition engineering”, Giovane, L. M., Fitzgerald, E. A., and Kimerling, L. C., to be published.Google Scholar
29. “Si0 5Ge0 5 relaxed buffer photodetectors and low-loss polycrystalline silicon waveguides for integrated optical interconnects at λ = 1.3 μm”, Giovane, L. M., Liao, L., Lim, D. R., Agarwal, A. M., Fitzgerald, E. A. and Kimerling, L. C., SPIE 3007, 74, (1997).Google Scholar