Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-25T22:58:10.060Z Has data issue: false hasContentIssue false

Material properties and growth process of microcrystalline silicon with growth rates in excess of 1 nm/s

Published online by Cambridge University Press:  17 March 2011

E.A.G. Hamers
Affiliation:
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
A.H.M. Smets
Affiliation:
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
C. Smit
Affiliation:
Delft University of Technology, DIMES, P.O. Box 5053, 2600 GB Delft, the Netherlands
J.P.M. Hoefnagels
Affiliation:
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
W.M.M. Kessels
Affiliation:
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
M.C.M. van de Sanden
Affiliation:
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
Get access

Abstract

The expanding thermal plasma (ETP) has been used to deposit microcrystalline silicon (µc-Si:H) with rates up to 2.7 nm/s. Typical material properties of well crystallised material are crystallite sizes of 20 nm, photo- and dark conductivity of 2×10−5 and 2x10−7 S/cm respectively, and an activation energy of 600 meV. The radical densities of SiH3, SiH, and Si present in the gas phase have been quantified. In conditions where [.proportional µc-Si:H is deposited the atomic hydrogen flux towards the surface is of the same magnitude or higher as the flux of deposited radicals. Furthermore, the abundance of radicals such as SiH and Si is large and may contribute several tens of percent to the deposition rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

[1] Koh, J., Ferlauto, A.S., Rovira, P.I., Wronski, C.R., and Collins, R.W., Appl. Phys. Lett. 75, 2286 (1999).10.1063/1.124992Google Scholar
[2] Kroll, U., Meier, J., Shah, A., Mikhailov, S., and Weber, J., J. Appl. Phys. 80, 4971 (1996).Google Scholar
[3] Matsuda, A., Thin Solid Films 337,1 (1999).Google Scholar
[4] Hamers, E.A.G., Morral, A. Fontcuberta i, Niikura, C., Brenot, R., and Cabarrocas, P. Roca i, J. Appl. Phys. 88, 3674 (2000).Google Scholar
[5] Kessels, W.M.M., Hoefnagels, J.P.M., Boogaarts, M.G.H., Schram, D.C., and Sanden, M.C.M. van de, J. Appl. Phys. 89, 2065 (2001).Google Scholar
[6] Sanden, M.C.M. van de, Severens, R.J., Kessels, W.M.M., Meulenbroeks, R.F.G., and Schram, D.C., J. Appl. Phys. 84, 2426 (1998).Google Scholar
[7] Sanden, M.C.M. van de, Severens, R.J., Kessels, W.M.M., Pas, F. van de, IJzendoorn, L. van, and Schram, D.C., Mat. Res. Soc. Symp. Proc. 467, 621 (1997).Google Scholar
[8] Mazouffre, S., Boogaarts, M.G.H., Mullen, J.A.M. van der, and Schram, D.C., Phys. Rev. Lett. 84, 2622 (2000).Google Scholar