Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T05:17:08.808Z Has data issue: false hasContentIssue false

Martensite Transition and Microscopic Magnetism of Epitaxial Ni2MnGa Films

Published online by Cambridge University Press:  01 February 2011

Gerhard Jakob
Affiliation:
jakob@uni-mainz.de, University of Mainz, Institute of Physics, Staudinger Weg 7, Mainz, 55099, Germany, 0049-6131-3924133, 0049-6131-3924076
Tobias Eichhorn
Affiliation:
tobiasei@students.uni-mainz.de, University of Mainz, Institute of Physics, Staudinger Weg 7, Mainz, 55099, Germany
Michael Kallmayer
Affiliation:
Kallmaye@uni-mainz.de, University of Mainz, Institute of Physics, Staudinger Weg 7, Mainz, 55099, Germany
Hans-Joachim Elmers
Affiliation:
elmers@mail.uni-mainz.de, University of Mainz, Institute of Physics, Staudinger Weg 7, Mainz, 55099, Germany
Get access

Abstract

A magnetically induced shape memory effect in Ni2MnGa results in huge magnetostrictive effects of several percent. Using x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD) we investigated element specific magnetic moments and electronic structure of single crystalline, (110) oriented Ni2MnGa films on a-plane Al2O3 substrates in the austenite and martensite state. The structural phase transition of the samples is evident from temperature dependent x-ray diffraction and magnetization measurements. The Ni XAS differ significantly for temperatures above and below the martensite transition in agreement with published ab-initio calculations. Using XAS in transmission geometry on our thin film samples we observe the corresponding reduction of the absorption feature as predicted by theoretical calculations. The XMCD analysis shows the orbital contribution of the Ni electrons to be responsible for the magnetic anisotropy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sozinov, A., Likhachev, A.A., Lanska, N., and Ullakko, K., Appl. Phys. Lett. 80, 1746 (2002).Google Scholar
2 Söderberg, O., Ge, Y., Sozinov, A., Hannula, S-P., and V.Lindroos, K., Smart Mater. Struct. 14, S223 (2005).Google Scholar
3 Webster, P. J, Ziebeck, K. R. A., Town, S. L., and Peak, M. S, Philos. Mag. B 49, 295 (1984).Google Scholar
4 Khovailo, V. V, Novosad, V., Takagi, T., Filippov, D. A, Levitin, R. Z, and Vasilev, A. N, Phys. Rev. B 70, 174413 (2004).Google Scholar
5 Ayuela, A., Enkovaara, J., and Nieminen, R. M, J. Phys.: Condens. Matter 14, 5325 (2002).Google Scholar
6 Schneider, H., Jakob, G., Kallmayer, M., Elmers, H. J, Cinchetti, M., Balke, B., Wurmehl, S., Felser, C., Aeschlimann, M., and Adrian, H., Phys. Rev. B 74, 174426 (2006).Google Scholar
7 Jakob, G. and Elmers, H.J., J. Magn. Magn. Mater. 310, 2779 (2007).Google Scholar
8 Kallmayer, M., Schneider, H., Jakob, G., Elmers, H.J.,Kroth, K., Kandpal, H., Stumm, U., and Cramm, C., Appl. Phys. Lett. 88, 072506 (2006).Google Scholar
9 Kallmayer, M., Schneider, H., Jakob, G., Elmers, H.J., Balke, B., and Cramm, S., J. Phys. D: Appl. Phys. 40, 1552 (2007).Google Scholar
10 Thole, B.T., Carra, P., Sette, F., and Laan, G. van der, Phys. Rev. Lett. 68, 1943 (1992).Google Scholar
11 Laan, G. van der and Kirkman, I.W., J. Phys.: Condens. Matter 4, 4189 (1992).Google Scholar
12 Jakob, G., Eichhorn, T., Kallmayer, M., and Elmers, H. J, Phys. Rev. B 76, 174407 (2007).Google Scholar