Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-11T12:05:09.430Z Has data issue: false hasContentIssue false

Many-Body Effects on Temperature-Dependence of the Interband Absorption in Quantum Wells

Published online by Cambridge University Press:  21 February 2011

G. Gumbs
Affiliation:
Department of Physics and Astronomy, Hunter College City University of New York, 695 Park Avenue, New York, NY 10021
D. Huang
Affiliation:
Dep artment of Electrical & Computer Engineering, Wayne State University, Detroit, MI 48202
V. Fessatidis
Affiliation:
Department of Physics, Fordham University, Bronx, NY 10458
Get access

Abstract

A many-body theory is presented for the interband absorption in a pseudomorphic GaAlAs/InGaAs/GaAs modulation doped quantum well. The electron-electron interaction in a degenerate Fermi sea is calculated in the self-consistent Hartree approximation. In addition, the binding energy within an electron-hole pair is included in the ladder approximation as a vertex correction to the response function. In our theory, the coupling between excitons is calculated in the generalized random-phase approximation (RPA). Our numerical results for the temperature-dependence of the absorption peaks at the Fermi edge (low temperature) and the band edge (room temperature) compare well with available experimental data obtained using contactless photoreflectance techniques. At low temperatures, our theory shows that there are important modifications to the single-particle model. We extract the Fermi energy by fitting our calculated results to the thermally broadened lineshape of the absorption spectrum. As a consequence, the electron density of the quantum wells can be accurately determined by means of this contactless, non-destructive, rapid and simple characterization method. Moreover, information on the alloy composition, built-in electric field and the interface stress can also be obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Smith, P. M., Chao, P. C., Ballingall, J. M. and Swenson, A. W., Microwave Journal, May 1990, p. 71.Google Scholar
2 Morkoc, H. and Unlu, H., Semiconductors and Semimatals, 24, ed. by Dingle, R. (Academic, New York, 1987), p. 135.Google Scholar
3 Schaff, W. J., Tasker, P. J., Foisy, M. C. and Eastman, L. F., Semiconductors and Semimetals, 33, ed. by Pearsall, T. P. (Academic, New York, 1990), p. 73.Google Scholar
4 Glembocki, O. J., Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE, Bellingham, 1990), 1286, 2 (1990).Google Scholar
5 Pollak, F. H., Superlattice and Microstructures, 10, 333 (1991).Google Scholar
6 Yin, X., Pollak, F. H., Pawlowicz, L., O'Neill, T. and Hafizi, M., Appl. Phys. Lett. 56, 1278 (1990); also, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE, Bellingham, 1990), 1286, 404 (1990).Google Scholar
7 Bottka, N., Gaskill, D. K., Wright, P. D., Kaliski, R. W. and Williams, D. A., J. Cryst. Growth, 107, 893 (1991).Google Scholar
8 Yan, D., Pollak, F. H., Boccio, V., Lin, C. L., Kirchner, P. D., Woodall, J. M., Gee, R. C. and Asbeck, P. M., (to be published in Appl. Phys. Lett.).Google Scholar
9 Yin, Y., Qiang, H., Pollak, F. H., Streit, D. C. and Wojtowicz, M., Appl. Phys. Lett. 61, 1579 (1992).Google Scholar
10 Yin, Y., Qiang, H., Pollak, F. H., Streit, D. C. and Wojtowicz, M., Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE, Bellingham, 1992), 1675, 498 (1992).Google Scholar
11 Yin, Y., Qiang, H., Yan, D., Pollak, F. H. and Noble, T. F., (submitted to Semiconductor Science and Technology).Google Scholar
12 Brierly, S. K., Hoke, W. E., Lyman, P. S. and Hendriks, H. Y., Appl. Phys. Lett. 59, 3306 (1991).Google Scholar
13 Gilperez, J. M., Sanchez-Rojas, J. L., Munoz, E., Calleja, E., Davis, J. P. R., Hill, G. and Castague, J., Appl. Phys. Lett. 61, 1225 (1992).Google Scholar
14 Zhang, Y.-H. and Ploog, K., Phys. Rev. B45, 14069 (1992).Google Scholar
15 Hawrylak, P., Phys. Rev. B42, 8986 (1990); 44, 6262 (1991); 45, 4237 (1992).Google Scholar
16 Ruckensteinand, A. E. Schmitt-Rink, S., Phys. Rev. B35, 7551 (1987); J. F. Mueller, A. Ruckenstein and S. Schmitt-Rink, Mod. Phys. Lett. B2, 35 (1991).Google Scholar
17 Chen, W., Fritze, M., Walecki, W., Nurmikko, A. V., Ackley, D., Hong, J. M. and Chang, L. L., Phys. Rev. B45, 8464 (1992).Google Scholar
18 Mahan, G. D., Phys. Rev. 153, 8822 (1967).Google Scholar
19 Mahan, G. D., Phys. Rev. B21, 1421 (1980).Google Scholar
20 Nozières, P. and De Dominicis, C. T., Phys. Rev. 178, 1097 (1969).Google Scholar