Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T00:04:42.941Z Has data issue: false hasContentIssue false

Manufacturable Polymeric Optical Waveguide based Bus Structures for Board Level Optical Interconnects

Published online by Cambridge University Press:  25 July 2012

Xinyuan Dou
Affiliation:
Department of Electrical and Computer Engineering, the University of Texas at Austin, Austin, TX, 78758, USA
Xiaolong Wang
Affiliation:
Oregon State University, Corvallis, OR 97331,USA
Xiaohui Lin
Affiliation:
Department of Electrical and Computer Engineering, the University of Texas at Austin, Austin, TX, 78758, USA
Ray T. Chen
Affiliation:
Department of Electrical and Computer Engineering, the University of Texas at Austin, Austin, TX, 78758, USA
Get access

Abstract:

In this paper, we studied the optimization of preparation for polymeric optical waveguide based bus structures with embedded 45 degree micro-mirrors by metallic hard mold method. The 45º facets on the metallic hard mold, which were used to create the 45 degree micro-mirrors, were studied by the atomic force microscopy (AFM). The surface roughness of the 45 degree facets was reduced from 70nm to be 2nm by a photopolymer coating step. High speed test on the waveguide shows the low loss and high Q-factor performance of the waveguide structures. A backplane bus with 10 Gbits/sec channel will be reported.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ishida, O., and Wang, T., “100 gigabit Ethernet transport,” IEEE Commun. Mag. 48, S4–S4, (2010).Google Scholar
2. Chen, R. T., Lin, L., Choi, C., Liu, Y., Bihari, B., Wu, L., Tang, S., Wickman, R., Picor, B., Hibbs-Brenner, M. K., Bristow, J., and Liu, Y. S., “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780793 (2000).Google Scholar
3. Doany, F. E., Schow, C. L., Baks, C. W., Kuchta, D. M., Pepeljugoski, P., Schares, L., Budd, R., Libsch, F., Dangel, R., Horst, F., Offrein, B. J., and Kash, J. A., “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345359 (2009).Google Scholar
4. Dou, X. Y., Wang, X. L, Huang, H. Y., Lin, X. H., Ding, D., Pan, D. Z., and Chen, R. T., “Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold,” Opt. Express 18, 378385 (2010).Google Scholar
5. Wang, L., Wang, X., Jiang, W., Choi, J., Bi, H., and Chen, R. T., “45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Appl. Phys. Lett. 87(14), 141110 (2005).Google Scholar
6. Wang, X., Jiang, W., Wang, L., Bi, H., and Chen, R. T., “Fully Embedded Board-Level Optical Interconnects From Waveguide Fabrication to Device Integration,” J. Lightwave Technol. 26(2), 243250 (2008).Google Scholar
7. Hikita, M., Yoshimura, R., Usui, M., Tomaru, S., and Imamura, S., “Polymeric optical waveguides for optical interconnections,” Thin Solid Films, 331(1), 303308 (1998).Google Scholar
8. Wang, F., Liu, F., and Adibi, A., “45 Degree Polymer Micromirror Integration for Board-Level Three-Dimensional Optical Interconnects,” Opt. Express, 17(13), 1051410521 (2009).Google Scholar
9. Lee, W. J., Hwang, S. H., Lim, J. W., and Rho, B. S., “Polymeric Waveguide Film With Embedded Mirror for Multilayer Optical Circuits,” IEEE Photon. Technol. Lett. 21(1), 1214 (2009).Google Scholar
10. Van Erps, J., Hendrickx, N., Debaes, C., Van Daele, P., and Thienpont, H., “Discrete Out-of-Plane Coupling Components for Printed Circuit Board-Level Optical Interconnections” IEEE Photon. Technol. Lett. 19(21), 17531755 (2007).Google Scholar
11. Hendrickx, N., Van Erps, J., Bosman, E., Debaes, C., Thienpont, H., and Van Daele, P., “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photon. Technol. Lett. 20(20), 17271729 (2008).Google Scholar
12. Rho, B. S., Lee, W. J., Lim, J. W., Kim, G. W., Cho, C. H., and Hwang, S. H., “High-reliability flexible optical printed circuit board for opto-electric interconnections,” Opt. Eng. 48(1), 015401 (2009).Google Scholar
13. Howley, B., Wang, X. L., Chen, Y. H., and Chen, Ray T., “Experimental evaluation of curved polymer waveguides with air trenches and offsets,” J. Appl. Phys. 100, 023114 (2006).Google Scholar
14. Huang, D., Sze, T., Landin, A., Lytel, R., and Davidson, H. L., “Optical interconnects: out of the box forever?IEEE Journal of Selected Topics in Quantum Electronics 9, 614624 (2003).Google Scholar
15. Han, X., Kim, G., Lipovski, G. J., and Chen, R. T., “An optical centralized shared-bus architecture demonstrator for microprocessor-to-memory interconnects,” IEEE J. Sel. Topics Quantum Electron. 9, 512512 (2003).Google Scholar
16. Chen, R. T., “VME Optical Backplane Bus for High Performance Computer,” Optoelectronics-Devices and Technologies 9, 8194 (1994).Google Scholar
17. Bi, H., Han, X., Chen, X., Jiang, W., Choi, J., and Chen, R. T., “15Gbps Bit-Interleaved Optical Backplane Bus using Volume Photo-polymer Holograms,” IEEE Photonics Technology Letters 18, 21652167 (2006).Google Scholar