Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T04:50:10.888Z Has data issue: false hasContentIssue false

Magneto-optics in Diluted Magnetic Semiconductors and in Ferromagnetic-Metal/Semiconductor Hybrids

Published online by Cambridge University Press:  28 March 2011

V. Zayets
Affiliation:
Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba, Ibaraki-ken 305-8568, Japan.
M. C Debnath
Affiliation:
Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba, Ibaraki-ken 305-8568, Japan. University of Oklahoma, 440 West Brooks, Norman, OK 73019-2061, U.S.A
H. Saito
Affiliation:
Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba, Ibaraki-ken 305-8568, Japan.
S. Yuasa
Affiliation:
Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba, Ibaraki-ken 305-8568, Japan.
K. Ando
Affiliation:
Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba, Ibaraki-ken 305-8568, Japan.
Get access

Abstract

The optical isolator made of diluted magnetic semiconductor and the isolator made of a ferromagnetic-metal/semiconductor hybrid have been developed aiming to integrate nonreciprocal optical devices, such as an optical isolator and optical circulator, into the semiconductor-made optoelectronic integrated circuits,. The Cd1-xMnxTe exhibits a huge Faraday effect and can be grown on a semiconductor substrate. For Cd1-xMnxTe waveguide with a Cd1-xZnxTe/ Cd1-xMnxTe quantum well grown on GaAs substrate we achieved a high Faraday rotation of 2000 deg/cm, a high isolation ratio of 27 dB, a low optical loss of 0.5 dB/cm, and a high magneto-optical figure-of-merit of 2000 deg/dB/kG in a wide 25-nm wavelength range. It was predicted theoretically and proved experimentally the effect of non-reciprocal loss in hybrid semiconductor/ferromagnetic metal waveguides. This effect can be use for new design of waveguide optical isolator. Because of its simplicity and technological compatibility, this design is attractive for the integration into optoelectronic integrated circuits. The magneto-optical figure-of merit of 7% was demonstrated for the AlGaAs passive optical waveguide covered by Co.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zaets, W., Watanabe, K., and Ando, K., Appl. Phys. Lett. 70, 2508 (1997).Google Scholar
2. Debnath, M. C., Zayets, V., and Ando, K., Appl. Phys. Lett. 91, 043502 (2007).Google Scholar
3. Zaets, W. and Ando, K. I.E.E.E. Photonics Tech. Lett. 11, 1012 (1999).Google Scholar
4. Zayets, V. and Ando, K. Appl. Phys. Lett. 86, 261105 (2005).Google Scholar
5. Ando, K., Okoshi, T., and Koshizuka, N., Appl. Phys. Lett. 53, 4 (1988).Google Scholar
6. Furdyna, J. K. J. Appl. Phys. 64, R29 (1988).Google Scholar
7. Onodera, K., Masumoto, T., and Kimura, M., Elect. Lett. 30, 1954 (1994).Google Scholar
8. Zaets, W. and Ando, K., Appl. Phys. Lett. 77, 1593 (2000).Google Scholar
9. Zayets, V., Debnath, M. C., and Ando, K., Appl. Phys. Lett. 84, 565 (2004).Google Scholar
10. Debnath, M. C., Zayets, V., and Ando, K., J. Appl. Phys. 95, 7181 (2004).Google Scholar
11. Debnath, M. C., Zayets, V., and Ando, K., Appl. Phys. Lett. 87, 091112 (2005).Google Scholar
12. Debnath, M. C., Zayets, V., and Ando, K., Appl. Phys. Lett. 91, 043502 (2007).Google Scholar
13. Brooks, C., Jessop, P.E., Deng, H., Yevick, D.O., and Tarr, G. Optical Engineering 45, 044603 (2006).Google Scholar
14. Huang, J.Z., Scarmozzino, R., Nagy, G., Steel, M.J., Osgood, R.M., IEEE Photonics Tech. Lett. 12, 317 (2000).Google Scholar
15. Kim, S.H., Takei, R., Shoji, Y., and Mizumoto, T. Opt. Express 17, 11267 (2009).Google Scholar
16. Fukuda, H., Yamada, K., Tsuchizawa, T., Watanabe, T., Shinojima, H., and Itabashi, S., Optics Express 14, 12401 (2006).Google Scholar
17. Augustin, L.M., Hanfoug, R., van der Tol, J.J.G.J.,.; de Laat, W.J.M., and Smit, M.K, IEEE Photonics Tech. Lett. 19, 1286 (2007).Google Scholar
18. Shimizu, H. and Nakano, Y., Japanese J. Appl. Phys. Part 2, 43, L1561 (2004).Google Scholar
19. Amemiya, T., Shimizu, H., Yokoyama, M., Hai, P. N., Tanaka, M., and Nakano, Y., Appl. Optics 46, 5784 (2007).Google Scholar
20. Van Parys, W., Moeyersoon, B., Van Thourhout, D., Baets, R., Vanwolleghem, M., Dagens, B., Decobert, J., Le Gouezigou, O., Make, D., Vanheertum, R., and Lagae, L., Appl. Phys. Lett. 88, 071115 (2006).Google Scholar
21. Takenaka, M. and Nakano, Y., Proceed. 11th Conference on Indium Phosphide and Related Materials, 289 (1999).Google Scholar