Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-29T15:14:19.110Z Has data issue: false hasContentIssue false

Magnetoelectric Properties of Multiferroic Composites with Pseudo 1-3 Type Structure

Published online by Cambridge University Press:  26 February 2011

Zhan Shi
Affiliation:
shizhan@tsinghua.org.cn, State Key lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Yifu Scientific and Technical Building, Beijing, 100084, China, People's Republic of
Ce-Wen Nan
Affiliation:
cwnan@tsinghua.edu.cn, State Key lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Beijing, 100084, China, People's Republic of
Jie Zhang
Affiliation:
Zhang-ji@mails.tsinghua.edu.cn, State Key lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Beijing, 100084, China, People's Republic of
Jing Ma
Affiliation:
majing02@mails.tsinghua.edu.cn, State Key lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Beijing, 100084, China, People's Republic of
JingFeng Li
Affiliation:
jingfeng@mail.tsinghua.edu.cn, State Key lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Beijing, 100084, China, People's Republic of
Get access

Abstract

A pseudo 1-3 type multiferroic composite consisting of Pb(Zr,Ti)O3 (PZT) rod array (with base) and Terfenol-D/Epoxy matrix was prepared by the dice-and-fill technique. Simple series and parallel mixture rules well described the measured dielectric and piezoelectric constants. Large magnetoelectric coefficients were observed in the pseudo 1-3 type composite, e.g., over 300 mV/cmi×Oe below 40 kHz and over 4500 mV/ cm×Oe at resonant frequency. The ME response strongly depends on the magnetostrictive behavior of the matrix and the volume fraction of PZT rods, which gives us two convenient way to modify their magnetoelectric response. For this pseudo 1-3 type multiferroic composite, the remarkable magnetoelectric response and well-developed fabrication technique are advantageous for their practical applications in piezoelectric-magnetoelectric multifunctional devices and large bandwidth magnetic sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Fiebig, M., J. Phys. D. 38, R123 (2005); T. Lottermoser, T. Lonkai T, U. Amann, D. Hohlwein, and J. Ihringer, M. Fiebig, Nature 430, 541 (2004); S.X. Dong, J. F. Li, D. Viehland, J. Cheng, and L. E. Cross, Appl. Phys. Lett. 85, 3534 (2005).Google Scholar
2 Nan, C. W., Phys. Rev. B 50, 6082 (1994).Google Scholar
3 Newnham, R. E., Skinner, D. P. and Cross, L. E., Mater. Res. Bull. 13, 525 (1978).Google Scholar
4 Srinivasan, G., Rasmussen, E. T., Levin, B. J., and Hayes, R., Phys. Rev. B 65, 134402 (2002); J. Zhai, N. Cai, Z. Shi, Y. H. Lin and C. W. Nan, J. Appl. Phys. 95, 5685 (2004).Google Scholar
5 Harshe, G., Dougherty, J. P., and Newnham, R. E., Int. J. Appl. Electromagnet. Mater. 4, 145 (1993); M. Zeng, J.G. Wan, Y. Wang, H. Yu, J.-M. Liu, X.P. Jiang, and C.-W. Nan, J. Appl. Phys. 95, 8069 (2004); J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, J. Electroceram. 7, 17 (2001).Google Scholar
6 Nan, C. W., Li, M., and Huang, J. H., Phys. Rev. B 63, 144415 (2001); C. W. Nan, M. Li, X. Q. Feng, and S. W. Yu, Appl. Phys. Lett. 78, 2527 (2001).Google Scholar
7 Mori, K. and Wuttig, M., Appl. Phys. Lett. 81, 100 (2002); S. X. Dong, J. F. Li, and D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1236 (2003); S. X. Dong, J. F. Li, and D. Viehland, IEEE T. Ultrason. Ferroelectr. Freq. Control 51, 794 (2004); S. X. Dong, J. F. Li, and D. Viehland, J. Appl. Phys. 95, 2625 (2004).Google Scholar
8 Nan, C. W., Liu, L., Cai, N., Zhai, J., Ye, Y., Lin, Y. H., Dong, L. J., and Xiong, C. X., Appl. Phys. Lett. 81, 3831 (2002); C. W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, and Y. Lin, J. Appl. Phys. 94, 5930 (2003).Google Scholar
9 Cai, N., Zhai, J., Nan, C. W., Lin, Y. and Shi, Z., Phys. Rev. B 68, 224103 (2003); C. W. Nan, N. Cai, Z. Shi, G. Liu and Y. Lin, Phys. Rev. B 71, 014102 (2005).Google Scholar
10 Safari, A., J. Phys. III 4, 1129 (1994).Google Scholar
11 Huang, J. H., Liu, H. K., and Dai, W. L., Int. J. Eng. Sci. 38, 1207 (2000).Google Scholar
12 Shi, Z., Nan, C. W., Zhang, J., Cai, N., and Li, J.-F., Appl. Phys. Lett. 87, 012503 (2005).Google Scholar
13 Taunaumang, H., Guy, I. L., and Chan, H. L. W., J. Appl. Phys. 76, 484 (1994).Google Scholar
14 Nan, C.W., Prog. Mater. Sci. 37, 1 (1993).Google Scholar