Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-26T21:03:49.521Z Has data issue: false hasContentIssue false

Magnetic Resonance and Electronic Spectroscopy of Defects in M2P2S6 Layered Compounds

Published online by Cambridge University Press:  28 February 2011

E. Lifshitz
Affiliation:
The University of Michigan, Dept. of Chemistry, Michigan, Ann Arbor, MI 48109–1055
A. H. Francis
Affiliation:
The University of Michigan, Dept. of Chemistry, Michigan, Ann Arbor, MI 48109–1055
Get access

Abstract

The lamellar transition metal chalcogeno-phosphates (M2P2S6) form an important family of two-dimensional semiconducting materials. They exhibit highly two-dimensional physical properties and an unusual solid-state chemistry that makes them of interest for new technologies. The lamellar structure is formed by stacking layers along a unique crystallographic axis. Under appropriate conditions, guest molecules can diffuse into the space between the layers to form intercalation compounds. The process of intercalation often creates defects and impurity sites resulting in a dramatic modification of the chemical and physical properties of the host lattice.

Several experimental methods have been utilized to characterize the defect structure produced by intercalation: ESR spectroscopy has revealed the equilibrium structure of intercalated molecules. Photoluminescence studies have shown a broadening of the conduction band due to the insertion of defect levels near the band edges. Optically detected magnetic resonance measurements demonstrated the presence of a strongly coupled donor-acceptor pair in the intercalated lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klingen, V. W., Ott, R., Hahn, H., Z. Anorg. Allg. Chem. 396, 271 (1973).CrossRefGoogle Scholar
2. Klingen, V. W., Eulenberger, G., Hahn, H., Z. Anorg. Allg. Chem. 401, 97 (1973).CrossRefGoogle Scholar
3. Michalowicz, A., Clement, R., Inorg. Chem. 21, 3872 (1982).CrossRefGoogle Scholar
4. Herber, R. H., Eckert, H., Phys. Rev. B. 31, 34 (1985).CrossRefGoogle Scholar
5. Audiere, J. P., Clement, R., Mathey, Y., Mazieres, C., Physica 99B 133 (1980).Google Scholar
6. Brec, R., Ouvrard, G., Rouxel, J., Mat. Res. Bull. 20, 1257 (1985).CrossRefGoogle Scholar
7. Clement, R., Garnier, O., Jegoudez, J., Inorg. Chem. 2, 1404 (1986).CrossRefGoogle Scholar
8. Cleary, D. A., Groh, J., Lifhsitz, E., Francis, A. H., J. Phys. Chem. 9, 551 (1988).CrossRefGoogle Scholar
9. Brec, R., Schleich, D., Louisy, A., Rouxel, J., Ann. Chimi Fr. 3, 347 (1978).Google Scholar
10. Lifshitz, E., Gentry, A., Francis, A. H., J. Phys. Chem. 88, 3038 (1984).CrossRefGoogle Scholar
11. Foot, P. J. S., Shaker, N. G., Mat. Res. Bull. 1, 173 (1983).CrossRefGoogle Scholar
12. Brec, R., Schleich, D. M., Ouvrard, G., Louisy, A., Rouxel, J., Inorg. Chem. 1 1814 (1979).CrossRefGoogle Scholar
13. Kanzaki, Y., Ogura, S., Matsumoto, O., Toida, Y., Physica 114B, 399(1982).Google Scholar
14. Fatseas, G. R., Evain, M., Ouvrard, G., Brec, R., Whangbo, M.-H., Phys. Rev. B. 35, 3082 (1987).CrossRefGoogle Scholar
15. Cleary, D.A., Francis, A.H., Lifshitz, E., J. Luminescence, 35, 163 (1986).CrossRefGoogle Scholar
16. Acrivos, J. V., Salem, J. R., Philos. Mag. 30, 603 (1974)CrossRefGoogle Scholar
17. Cavenett, B. C., Advan. Phys. 30 475 (1981).CrossRefGoogle Scholar