Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T08:53:59.941Z Has data issue: false hasContentIssue false

Magnetic Properties of Gd-Substituted Yttrium Nitride

Published online by Cambridge University Press:  26 February 2011

R. B. van Dover
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
L. F. Schneemeyer
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
E. M. Gyorgy
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
Get access

Abstract

Gd2Y1-xN is an instantiation of the broad series of diluted magnetic materials composed of lanthanide nitrides in a Sc, Y or La nitride host. These lanthanoid nitrides are interstitial compounds which all form in the Bi structure and with similar lattice constants, so solid solutions are readily obtained. We have prepared single-crystal thin films by epitaxial growth on sapphire substrates, and obtained material with moderate carrier densities (n Hall∼10 21 cm-3) and mobilities (μHall10 cm2V-1sec-1). Below the ordering temperature Tc,∼15 K the GdxY1-x,N films (0.25<x<0.40) exhibit a ferromagnetic-like M-H loop. The saturation magnetization measured at 15 kOe and 4.2 K is anomalously low, representing an effective moment of only 4.2 μB per Gd compared to the expected value of at least 7.2 μB. The piecewise-linear M-H curve is inconsistent with conventional models for a simple anisotropic ferromagnet. These features illustrate some of the unusual properties we are beginning to identify in the behavior of these new materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schneemeyer, L. F., van Dover, R. B. and Gyorgy, E. M. (to be published in Proceeding, 1986 Conf. on Magnetism and Magn. Matls.).Google Scholar
2. Galazka, R. R., Proc. 14th Intnl. Conf. on the Physics of Semiconductors, Edinburgh, 1978 (Inst. Phys., London, 1979), p. 135.Google Scholar
3. Kempter, C., Krikorian, N. H., and McGuire, J. C., J. Phys. Chem. 61, 1237 (1957).Google Scholar
4. Busch, G., Junod, P., Vogt, O. and Hulliger, F., Phys. Lett. 6, 79 (1963).Google Scholar
5. Gambino, R. J., McGuire, T. R., Alperin, H. A. and Pickart, S. J., J. Appl. Phys. 41, 933 (1970).Google Scholar
6. Cutler, R. A. and Lawson, A. W., J. Appl. Phys. 46, 2739 (1975).Google Scholar
7. Wachter, P. and Kaldis, E., Solid State Comm. 34, 241 (1980).Google Scholar
8. Hulliger, F., ”Rare Earth Pnictides,” in Handbook on the Physics and Chemistry of Rare Earths, Gschneider, K. A. and Eyring, L., Eds., (North Holland, Amsterdam, 1979).Google Scholar
9. Dismukes, J. P., Yim, W. M., Tietjen, J. J., and Novak, R. E., RCA Review 31, 680 (1970).Google Scholar
10. Sloan Technology Corp., Santa Barbara, California 93103.Google Scholar
11. van Dover, R. B. and Schneemeyer, L. F. (to be published).Google Scholar
12. van der Pauw, L. J., Phillips Res. Reports 13, 1 (1958).Google Scholar
13. obtained from Ames Material Preparations Center, Ames Laboratory, Iowa State Univ, Ames, Iowa.Google Scholar
14. see, e. g., Chikazumi, S. and Charap, S. H., Physics of Magnetism, (Krieger, Malabar, 1978), p. 70ff.Google Scholar
15. Arrott, A., Phys. Rev. 108, 1394 (1957).CrossRefGoogle Scholar
16. Miyajima, H., Sato, K. and Mizoguchi, T., J. Appl. Phys. 47, 4669 (1976).Google Scholar