Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T03:17:47.843Z Has data issue: false hasContentIssue false

Magnetic Properties of Epitaxial 6 ML fcc-Fe/Cu (100) Films

Published online by Cambridge University Press:  03 September 2012

L. J. Swartzendruber
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
L. H. Bennett
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
M. T. Kief
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
W. F. Egelhoff Jr
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

A study has been made of the magnetic properties of epitaxial 6 Monolayer (ML) fcc-Fe films on Cu (100) with various thicknesses of epitaxial Cu deposited on top of the Fe. It was found that the magnetic properties undergo striking changes as a function of the Cu thickness. The easy axis of magnetization goes from being in-plane for the bare Fe to perpendicular upon the deposition of 1 ML Cu. Concurrently there is a dramatic decrease in the Kerr signal intensity at saturation. Upon depositing a second ML of Cu the Kerr signal intensity more than doubles, and the easy axis remains perpendicular. For Cu overlayers of 3 ML to 10 ML the Kerr signal intensity at saturation gradually diminishes to below the level of detectability, as if the Fe were nonmagnetic. A superlattice consisting of 60 ML Cu/ (6 ML 57Fe/10 ML Cu)×5/Cu (100) was fabricated and studied at room temperature by conversion electron Mòssbauer spectroscopy. The results confirmed that the Fe is indeed nonmagnetic. The four inner Fe layers of the 6 ML film have the same isomer shift as bulk fcc-Fe in precipitates in Cu, and the two boundary Fe layers exhibit an asymmetric quadrupole doublet.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Onellion, M. F., Fu, C. L., Thompson, M. A., Erskine, J. L., and Freeman, A. J., Phys. Rev. B 33, 7322 (1986).Google Scholar
[2] Amiri Hezaveh, A., Jennings, G., Pescia, D., Willis, R. F., Prince, K., Surman, M., and Bradshaw, A. M., Solid State Comm. 57, 329 (1986).Google Scholar
[3] Montano, P. A., et al. Phys. Rev. Lett. 59, 1041 (1987).Google Scholar
[4] Pescia, D., Stampanoni, M., Bona, G. L., Vaterlaus, A., Willis, R. F., and Meier, F., Phys. Rev. Lett. 58, 2126 (1987).Google Scholar
[5] Macedo, W. A. A. and Keune, W., Phys. Rev. Lett. 61, 475 (1988).Google Scholar
[6] Liu, C, Moog, E. R., and Bader, S. D., Phys. Rev. Lett. 60, 2422 (1988).Google Scholar
[7] Pappas, D. P., Kamper, K.-P., Hopster, H., Phys. Rev. Lett. 64, 3179 (1990).Google Scholar
[8] Macedo, W. A. A., Keune, W., and Ellerbroch, E. D., J. Mag. Magn. Mat. 93, 552 (1991).Google Scholar
[9] Bennett, W. R., Schwarzacher, W., and Egelhoff, W. F. Jr, Phys. Rev. Lett. 65, 3169 (1990).Google Scholar
[10] Thomassen, J., May, F., Feldmann, B., Wuttig, M., and Ibach, H., Phys. Rev. Lett. 69, 3831 (1992).Google Scholar
[11] Mosca, D. H., Petroff, F., Fert, A., Schroder, P. A., Pratt, W. P. Jr, and Laloee, R., J. Mag. Mag. Mat. 94, L1 (1991).Google Scholar
[12] Katayama, T., Suzuki, Y., Awano, H., Nishihara, Y., and Koshizuka, N., Phys. Rev. Lett. 60, 1425 (1988).Google Scholar
[13] Steigerwald, D. A., Jacob, I., and Egelhoff, W. F. Jr, Surface Sci. 202, 472 (1988).Google Scholar
[14] Egelhoff, W. F. Jr, and Steigerwald, D. A., J. Vac. Sci. Technol. A 7, 2167 (1989).Google Scholar
[15] Egelhoff, W. F. Jr, Jacob, I., Rudd, J. M., Cochran, J. F., and Heinrich, B., J. Vac. Technol. A 8, 1582 (1990);Google Scholar
Egelhoff, W. F. Jr, and Kief, M. T., Phys. Rev. B 45, 7795 (1992).Google Scholar
[16] Brodde, A. and Neddermeyer, H., to be published.Google Scholar
[17] Chambliss, D. D., Wilson, R. J., and Chiang, S., J. Vac. Sci. Technol. A 10, 1992 (1992).Google Scholar
[18] Egelhoff, W. F. Jr, J. Vac. Sci. Technol. A 7, 2060 (1989).Google Scholar
[19] Schwarzacher, W., Allison, W., Willis, R. F., Penfold, J., Ward, R.C., Jacob, I., and F. Egelhoff, W. Jr, Solid State Comm. 71, 563 (1989); and unpublished results.Google Scholar
[20] Engel, B. N., Wiedmann, M. H., Van Leeuwen, R. A., and Falco, C. M., J. Appl. Phys., in press.Google Scholar
[21] Wiedmann, M. W., Engel, B. N., Van Leeuwen, R. A., and Falco, C. M., Mater. Res. Soc. Symp. Proc. 313 (in press, 1993).Google Scholar
[22] Ould-Mahfoud, S., Mégy, R., Bardoux, N., Bartenlian, B., Beauvillain, P., Chappert, C., Corno, J., Lecuyer, B., Sczigel, G., Veillet, P., and Weller, D., Mater. Res. Soc. Symp. Proc. 313 (in press, 1993).Google Scholar
[23] Clarke, A., Rous, P. J., Arnott, M., Jennings, G., and Willis, R. F., Surface Sci. 192, L843 (1987).Google Scholar
[24] Oneinon, M., Thompson, M. A., Erskine, J. L., Duke, C. B., and Paton, A., Surface Sci. 179, 219 (1987).Google Scholar
[25] Chambers, S. A., Wagener, T. J., and Weaver, J. H., Phys. Rev. B 36, 8992 (1987).Google Scholar
[26] Darici, Y., Marcan, J., Min, H., and Montano, P. A., Surface Sci. 182, 477 (1987).Google Scholar
[27a] Daum, W., Stuhlmann, C., and Ibach, H., Phys. Rev. Lett. 60, 2741 (1988).Google Scholar
[27b] Liu, S. H., Quinn, J., Tian, D., Jona, F., and Marcus, P. M., Surface Sci. 209, 364 (1989);Google Scholar
Jona, F. and Marcus, P. M., Surface Sci. 223, L8978 (1989).Google Scholar
[28] Xhonneux, P. and Courtens, E., Phys. Rev. B 46, 556 (1992).Google Scholar
[29] Stuhlmann, C., Beckers, U., Thomassen, J. H., Wuttig, M., Ibach, H., and Schmidt, G., in The Structure of Surfaces III, Tong, S. Y., Van Hove, M. A., Takayanagi, K., and Xie, X. D., Eds., Springer-Velag, Berlin, 1993.Google Scholar
[30] Magnan, H., Chanderis, D., Villette, B., Heckmann, O., and Lecante, J., Phys. Rev. Lett. 67, 859 (1991); and W. Schwarzacher, to be published.Google Scholar
[31] Kief, M. T. and Egelhoff, W. F. Jr, Phys. Rev. B 47, 10785 (1993).Google Scholar
[32] Moruzzi, V. L., Phys. Rev. Lett. 57, 2211 (1986).Google Scholar
[33] Moruzzi, V. L, Marcus, P. M., and Kubier, J., Phys. Rev. B 39, 6957 (1989).Google Scholar
[34] Ortega, J. E., Himpsel, F. J., Phys. Rev. Lett. 69, 844 (1992).Google Scholar
[35] Ortega, J. E., Himpsel, F. J., Mankey, G. J., and Willis, R. F., Phys. Rev. B, in press (see curve 2 in Fig. 3b).Google Scholar
[36] Ortega, J. E., Himpsel, F. J., Mankey, G. J., and Willis, R. F., Mater. Res. Soc. Symp. Proc. 313 (in press, 1993).Google Scholar
[37] Johnson, P. D., Mat. Res. Soc. Symp Proc. 313 (in press, 1993).Google Scholar
[38] Bennett, L. H. and Swartzendruber, L. J., Acta Metall. 18, 485 (1970).Google Scholar
[39] Abrahams, S. C., Guttman, L. and Kasper, I. S., Phys. Rev. 127, 2052 (1962);Google Scholar
Weiss, R. J., Phil. Mag. 9, 361 (1964) and Proc. Phys. Soc. 82, 281 (1963).Google Scholar
[40] Keune, W., Halbauer, R., Gonser, U., Lauer, J., and Williamson, D. L., J. Appl. Phys. 48, 2976 (1977).Google Scholar