Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T18:57:45.986Z Has data issue: false hasContentIssue false

Magnetic properties characterization of functionalized iron oxide nanoparticles

Published online by Cambridge University Press:  31 January 2011

Yuan Yuan
Affiliation:
yuany3@rpi.edu, Rensselaer Polytechnic Institute, Mechanical, Aerospace and Nuclear Engineering, Troy, New York, United States
Diana-Andra Borca-Tasciuc
Affiliation:
borcad@rpi.edu, Rensselaer Polytechnic Institute, Mechanical, Aerospace and Nuclear Engineering, Troy, New York, United States
Get access

Abstract

This paper uses complex magnetic susceptibility measurements to investigate the effects of different coatings on the susceptibility of iron oxide nanoparticles. The two coatings used in these measurements are aminosilane and carboxymethyl-dextran. Susceptibility measurements are carried out over a range of frequencies from 10 KHz to 1 MHz using a differential impedance method. The differential impedance measurement setup is validated by measuring the susceptibility of ferrofluids and comparing the results to values previously published in literature. The theoretical relaxation times based on Brownian and Neel mechanisms are used to predict the resonance frequency of imaginary part of complex susceptibility for iron oxide nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Johannsen, M., Gneveckow, U., Eckelt, L., Feussner, A., Waldofner, N., Scholz, R., Deger, S., Wust, P., Loening, S.A. and Jordan, A.. Int. J. Hyperthermia, 21, 637(2005).Google Scholar
2 Johannsen, M., Thiesen, B., Jordan, A., Taymoorian, K., Gneveckow, U., Waldofner, N., Scholz, R., Koch, M., Lein, M., Jung, K.. Prostate, 64,283(2005).Google Scholar
3 Jordan, A., Scholz, R., Maier-Hauff, K., Landeghem, F.K. Van, Waldoefner, N., Teichgraeber, U., Pinkernelle, J., Bruhn, H., Neumann, F., Thiesen, B., J. Neuro. Oncol. 78,7(2006).Google Scholar
4 Pankhurst, Q. A., Connolly, J., and Dobson, J., J. Phys. D: Appl. Phys. 36, R167(2003).Google Scholar
5 Kalambur, V.S. Han, B., Hammer, B.E. Shield, T.W. and Bischof, J.C. Nanotech., 16, 1221(2005).Google Scholar
6 Raikher, Yu.L. Pshenichnikov, A.F. JETP Lett. 41, 132 (1985).Google Scholar
7 Hanson, M., J. Magn. Mater. 96, 105(1991).Google Scholar
8 Fannin, P.C. Charles, S.W. J. Phys. D 22, 187(1989).Google Scholar
9 Hergt, R., Hiergeist, R., Hilger, I., Kaiser, W.A. Lapatnikov, Y., Margel, S., and Richter, U., J. Magn. . Magn. Mater. 270, 345 (2004).Google Scholar
10 Rosensweig, R.E.. J. Magn. Mater., 252, 370(2002).Google Scholar
11 Vaishnava, P.P. Tackett, R., Dixit, A., Sudakar, C., Naik, R., and Lawes, G.. J. Appl. Phys. 102063914 (2007).Google Scholar
12 Gaya, G.F. Fernandez-Pacheco, R., Arruebo, M., Cassinelli, M., and Ibara, M.R. J.Magn.Mater. 316,132(2007).Google Scholar
13 Eggeman, A.S. Majetich, S.A. Farrell, D., and Pankhurst, Q.A. IEEE Trans. Magn. 68,33(2004).Google Scholar
14 Kim, D.H. Lee, S.H. Im, K.H. Kim, K.N. Kim, K.M. Shil, I.B. Lee, M.H. and Lee, Y.K.. Current Appl. Phys., 6S1, e242(2006).Google Scholar
15 Fannin, P.C. Scaife, B.K.P. Charles, S.W.. J. Magn. Mater., 72, 95(1988).Google Scholar
16 Fannin, P.C. Cohen-Tannoudji, L., Bertrand, E., J. Magn. Mater., 303, 147(2006)Google Scholar