Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T15:12:26.009Z Has data issue: false hasContentIssue false

Magnetic Exchange Interaction Between Fe(110) Layers across a Ag(111) Intervening Layer

Published online by Cambridge University Press:  26 February 2011

Z. Q. Qiu
Affiliation:
The Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD
C. J. Gutierrez
Affiliation:
The Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD
H. Tang
Affiliation:
The Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD
S. H. Mayer
Affiliation:
The Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD
J. C. Walker
Affiliation:
The Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD
Get access

Abstract

We have grown a series of Fe(110)/Ag(111)/Fe(110) sandwich structures using a PHI 430B MBE system and analyzed their magnetic properties using transmission Mössbauer spectroscopy. The heterostructures consisted of two 30-monolayer (ML) 56Fe(110) slabs separated by an intervening Ag(111) layer 2 to 35 ML thick, with a 2 ML 57Fe Mössbauer probe layer placed at one of the Fe/Ag interfaces. We found that temperature dependence of the hyperfine field in the probe layer and the saturation hyperfine field value as well stronly depend on the Ag interlayer thickness. This result demonstrates that there exists an interlayer magnetic exchange interaction between the Fe layers across Ag. In addition, preliminary evidence suggests that this is probably an RKKY interaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Majkrzak, C. F., Cable, J. W., Kwo, J., Hong, M., Mcwhan, D. B., Yafet, Y., Waszczak, J., and Vettier, C., Phys. Rev. Lett. 56, 2700 (1986).CrossRefGoogle Scholar
2. Rhyne, J. J., Erwin, R. W., Borchers, J., Sinha, S., Salomon, M. B., Du, R., and Flynn, C. P., J. Appl. Phys. 61, 4043 (1987).CrossRefGoogle Scholar
3. Parkin, S. S. P., More, N., and Roche, K. P., Phys. Rev. Lett. 64, 2304 (1990).CrossRefGoogle Scholar
4. Grunberg, P. and Saurenbach, F., in Proceedings of the MRS International Meeting on Advanced Materials, Tokyo, Japan 1988, Vol. 10, p. 255.Google Scholar
5. Bennet, W. R., Schwarzacher, W., and Egelhoff, W. F. Jr, Phys. Rev. Lett. 65, 3169 (1990).CrossRefGoogle Scholar
6. Parkin, S. S. P., Bhadra, R., and Koche, K. P., Phys. Rev. Lett. 66, 2152 (1991).CrossRefGoogle Scholar
7. Lugert, G. and Bayreuther, G., Phys. Rev. B 38, 11068 (1988).CrossRefGoogle Scholar
8. Walker, J. C., Droste, R., Stern, G., and Tyson, J., J. Appl. Phys. 55, 2500 (1984).CrossRefGoogle Scholar
9. Tyson, J., Owens, A. W., and Walker, J. C., J. Magn. Magn. Mat. 35, 126 (1983).CrossRefGoogle Scholar
10. Rado, G. T., Bull. Am. Phys. Soc. II 2, 127 (1957).Google Scholar
11. Mills, D. L. and Maradudin, A. A., J. Phys. Chem. Solids 28, 1855 (1967).CrossRefGoogle Scholar
12. Weinert, M., Freeman, A. J., Ohnishi, S., and Davenport, J. W., J. Appl. Phys. 57 (1), 3641 (1985).CrossRefGoogle Scholar
13. Qiu, Z. Q. and Walker, J. C., J. Appl. Phys. 67, 5643 (1990).CrossRefGoogle Scholar
14. Qiu, Z. Q. and Bader, S. D., to be published.Google Scholar