Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-22T07:01:11.274Z Has data issue: false hasContentIssue false

Magnetic anisotropy of Fe/Cu(100) over- and interlayers

Published online by Cambridge University Press:  10 February 2011

B. Újfalussy
Affiliation:
Research Institute for Solid State Physics, H-1525 Budapest, PO Box 49, Hungary Center of Computational Materials Science, Getreidemarkt 9/158, A-1060 Wien, Austria, bu@ws5.cms.tuwien.ac.at
L. Szunyogh
Affiliation:
Center of Computational Materials Science, Getreidemarkt 9/158, A-1060 Wien, Austria, bu@ws5.cms.tuwien.ac.at Department of Theoretical Physics, Technical University Budapest, Budafoki út 8, H-1521, Budapest, Hungary
P. Weinberger
Affiliation:
Center of Computational Materials Science, Getreidemarkt 9/158, A-1060 Wien, Austria, bu@ws5.cms.tuwien.ac.at
Get access

Abstract

The perpendicular magnetic anisotropy in Fe/Cu thin film over- and interlayers is investigated in terms of the fully relativistic spin-polarized band theory. The formation of the ground state is addressed and a layer-resolved analysis of the magnetic anisotropy energies for the Fe/Cu(100) and the Cu/Fe/Cu(100) system is presented both for ferromagnetic and anti-ferromagnetic cases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pinski, F.J., Staunton, J., Györffy, B.L., Johnson, D.D., and Stocks, G.M., Phys. Rev. Lett. 56, 2096 (1986).Google Scholar
[2] Li, Dongqi, Freitag, M., Pearson, J., Qiu, Z. Q., and Bader, S. D., J. Appl. Phys. 76, 6425 (1994).Google Scholar
[3] Thomassen, J., May, F., Feldman, B., Wuttig, M., and Ibach, H., Phys. Rev B 48, 10284 (1993).Google Scholar
[4] Mankey, G. J., Willis, R.F., and Himpsel, F. J., Phys. Rev. B 48, 10284 (1993).Google Scholar
[5] Fu, C. L. and Freeman, A. J., Phys. Rev. B 35, 925 (1987).Google Scholar
[6] Kraft, T., Marcus, P. M., and Schemer, M., Phys. Rev. B 49, 11511 (1994).Google Scholar
[7] Lorenz, R. and Hafner, J., submitted to Phys. Rev. B (1996).Google Scholar
[8] Szunyogh, L., Újfalussy, B., Weinberger, P., and Kollár, J., Phys. Rev. B 49, 2721 (1994).Google Scholar
[9] Zeller, R., Dederichs, P.H., Újfalussy, B., Szunyogh, L., and Weinberger, P., Phys. Rev. B 52, 8807 (1995).Google Scholar
[10] Szunyogh, L., Újfalussy, B., and Weinberger, P., Phys. Rev. B 51, 9552 (1995).Google Scholar
[11] Vosko, S.H., Wilk, L., and Nusair, M., Can. J. Phys. 58, 1200 (1980).Google Scholar
[12] Újfalussy, B., Szunyogh, L., and Weinberger, P., Phys. Rev. B 54, 9883 (1996).Google Scholar
[13] Wang, C.S., Klein, B.M., and Krakauer, H., Phys. Rev. Lett. 54, 1852 (1985).Google Scholar
[14] Szunyogh, L., Újfalussy, B., and Weinberger, P., Phys. Rev. B 51, 9552 (1995).Google Scholar
[15] Detzel, Th., Vonbank, M., Donath, M., and Dose, V., J. Magn. Magn. Mater. 147, L1 (1995).Google Scholar
[16] Landau, L.D., Lifshitz, E.M., and Pitaevskii, L.P., Course of Theoretical Physics, Vol. 8. Electrodynamics of Continuous Media, (Pergamon Press, Oxford, Second Edition, 1984)Google Scholar