Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-02T09:24:10.092Z Has data issue: false hasContentIssue false

Lyotropic and Thermotropic Lrquid Crystals Under Shear Flow

Published online by Cambridge University Press:  25 February 2011

E. B. Sirota
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, NJ 08801
C. R. Safinya
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, NJ 08801
R. J. Piano
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, NJ 08801
C. Jeppesen
Affiliation:
Department of Physics, University of California, Los Angeles, CA 90024
R. F. Bruinsma
Affiliation:
Department of Physics, University of California, Los Angeles, CA 90024
Get access

Abstract

We describe x-ray scattering studies of the nematic and smectic-A phases of the thermotropic liquid crystal 8CB and the Lα, and L3 (lamellar and sponge) phases of the lyotropic liquid crystal system: SDS, dodecane, pentanol and water. In the thermotropic system a series of orientational states of the nematic director is observed before entering the smectic-A phase where the smectic density wave and nematic director are oriented normal to the shear plane at high shear rates. In the lyotropic system lamellar fluctuations in the sponge phase (L3) become oriented by shear and in the lamellar phase (Lα) at high shear the layers orient preferentially along the velocity-gradient direction, in highly anisotropic cylindrical multilamellar liposome-like structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Safinya, C. R., Sirota, E. B., and Plano, R. J., Phys. Rev. Lett. 66. 1986 (1991); C. R. Safinya, E. B. Sirota, R. J. Piano, and R. Bruinsma, J. Phys. Condens. Matter 2, SA365-SA371 (1990); C.R. Safinya, E.B. Sirota, R. Piano and N. Lei, "Nonequilibrium X-ray Study of the Nematic to Smectic-A Transition under Shear Flw, Macromolecular Liquids, MRS, 1177, 165 (1990).Google Scholar
2) Plano, R. J., Safinya, C. R., Sirota, E. B., and Wenzel, L., (submitted to Rev. Sci. Instr.).Google Scholar
3) Gennes, P. G. de, in “The Physics of Liquid Crystals”, (Oxford University Press, London, 1974).Google Scholar
4) Litster, J. D. and Birgeneau, R. J., Physics Today (May 1982, p. 26); and P. S. Pershan, “Structure of Liquid Crystal Phases”, (World Scientific, Singapore, 1988).Google Scholar
5) Hohenberg, P. C. and Halperin, B. I., Rev. Mod. Phys. 49, 435 (1977).Google Scholar
6) Ericksen, J. L., Arch. Ration. Mech. Anal. 4, 231 (1960); F. M. Leslie, Quart. J. Mech. Appl. Math. 19, 357 (1966); O. Parodi, J. Phys. (Paris) 31, 581 (1970).CrossRefGoogle Scholar
7) McMillan, W. L., Phys. Rev. A 9, 1720 (1974); F. Janig and F. Brochard, J. Phys. (Paris) 35, 301 (1974).CrossRefGoogle Scholar
8) Bruinsma, R. F. and Safinya, C. R., Phys. Rev. A, 43, 5377 (1991).CrossRefGoogle Scholar
9) Pieranski, P and Guyon, E., Phys. Rev. Lett. 32, 924 (1974); K. Skarp et al., Mol. Cryst. Liq. Cryst. 66, 199 (1981).CrossRefGoogle Scholar
10) Roux, D. and Bellocq, A. M., “Physics of Amphiphiles”, eds. Degiorgio, V. and Corti, M. (North-Holland, Amsterdam, (1985).Google Scholar
11) Cates, M. E. and Milner, S. T., Phys. Rev. Lett. 62, 1856 (1989).Google Scholar
12) Diat, O. and Roux, D., (submitted to Nature).Google Scholar