Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-28T17:11:21.586Z Has data issue: false hasContentIssue false

Luminescence Properties and Energy Transfer Processes in Fluorescent and Phosphorescent Tris(Phenylquinoxaline)

Published online by Cambridge University Press:  21 March 2011

Sylke Blumstengel
Affiliation:
INFM and Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy
Elio Colabella
Affiliation:
INFM and Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy
Riccardo Tubino
Affiliation:
INFM and Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy
M. Jandke
Affiliation:
Universität Bayreuth, Makromolekulare Chemie I and Bayreuther Institut für Makromolekülforschung (BIMF), 95440 Bayreuth, Germany
P. Strohriegl
Affiliation:
Universität Bayreuth, Makromolekulare Chemie I and Bayreuther Institut für Makromolekülforschung (BIMF), 95440 Bayreuth, Germany
Get access

Abstract

We have studied the photophysical properties and energy transfer processes in tris(phenylquinoxalines ) (TPQ). TPQs emit blue fluorescence with a maximum at 2.9 eV as well as green phosphorescence at 2.2 eV. When doped with a phosphorescent dye efficient energy transfer takes place from the excited singlet and triplet state of the TPQ host to the guest molecules. The mechanism of energy transfer can be understood in the frame of Förster's theory of dipole-dipole interaction. Besides the interesting photophysical properties, TPQs are also very efficient electron transport materials. Red light-emitting diodes utilizing doped TPQ as emitter and electron transport layer have been prepared and electroluminescence properties investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Rauscher, U. et al. , Phys. Rev. B 42, 9839 (1990).Google Scholar
[2] Brédas, J.L., Adv. Mat., 8, 447 (1996).Google Scholar
[3] Baldo, M.A. et al. , Nature 395, 151 (1999).Google Scholar
[4] O'Brien, D.F. et al. , Appl. Phys. Lett. 74, 442 (1999).Google Scholar
[5] Baldo, M.A. et al. , Appl. Phys. Lett. 75, 4 (1999).Google Scholar
[6] Cleve, V. et al. , Adv. Materials 11, 285 (1999).Google Scholar
[7] Förster, Th., Annalen der Phys ik 2, 55, (1948).Google Scholar
[8] Dexter, D.L., J. Chem. Phys. 21, 836 (1953).Google Scholar
[9] Jandke, M. et al. , Macromolecules 31, 6434 (1998).Google Scholar
[10] Papkovski, D.B., Sens. Actuators B 29, 213 (1995).Google Scholar
[11] tengel, S. Blums et al. , Synth. Met. (in print).Google Scholar
[12] twood, D. Eas et al. , J. Mol. Spectr. 35, 359 (1970).Google Scholar
[13] Darwent, J.R., Coordination Chemis try Rev. 44, 83 (1982).Google Scholar
[14] Buloviæ, V. et al. , Chem. Phys. Lett. 287, 455 (1998).Google Scholar