Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T06:44:27.524Z Has data issue: false hasContentIssue false

Luminescence of Silicon Nanocrystals in SiO2: Effects of Excitation Spectrum

Published online by Cambridge University Press:  15 February 2011

A. Hryciw
Affiliation:
Dept. of Physics, University of Alberta, Edmonton, AB Canada
C.W. White
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TNUSA
K.H. Chow
Affiliation:
Dept. of Physics, University of Alberta, Edmonton, AB Canada
A. Meldrum
Affiliation:
Dept. of Physics, University of Alberta, Edmonton, AB Canada
Get access

Abstract

Silicon nanocrystals formed by ion implantation and annealing of fused silica wafers show a strong, broad photoluminescence (PL) peak centered at a wavelength between 750 and 900 nm, depending on the processing conditions. This luminescence has been extensively investigated and trial device structures based on these materials have been built. However, relatively few studies also report the optical absorption spectra. In fact, the absorbance of these specimens is quite low (usually < 10%) at wavelengths greater than 450 nm (i.e., at the pump wavelengths typically used for PL studies). This suggests that in numerous studies of Si nanocrystals produced by ion implantation, only a small fraction of the nanocrystals is responsible for the observed PL at the typical pump wavelengths. In this study, we investigated how the PL spectrum and intensity depend on the power and wavelength of the pump laser. We find that the PL intensity approaches saturation at high pump fluences, and that the peak emission wavelength is sensitive to the excitation power. These observations can be attributed to the dynamics of the excitation/recombination processes at different energies, and indicate that considerable care must be taken when comparing the emission spectra of different specimens. Our data are uniformly consistent with a mechanism of light emission involving subgap states (i.e., radiative trap sites) and are not supportive of a “pure” quantum confinement model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pavesi, L., DalNegro, L., Mazzoleni, C., Franzo, G., and Priolo, F., Nature 408, 440 (2000)Google Scholar
2. Franzò, G., Vinciguerra, V., and Priolo, F., Appl. Phys. A 69, 3 (1999)Google Scholar
3. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamamoto, K., Appl. Phys. Lett. 71, 1198 (1997)Google Scholar
4. Iacona, F., Franzò, G., Moreira, E.C., Pacifici, D., Irrera, A., and Priolo, F., Mater. Sci. Eng. C 19, 377 (2002)Google Scholar
5. Chan, S. and Fauchet, P.M., Opt. Mater. 17, 31 (2001)Google Scholar
6. Neufeld, E., Wang, S., Apetz, R., Buchal, Ch., Carius, R., White, C. W., and Thomas, D. K., Thin Sol. Films 294, 238 (1997)Google Scholar
7. Mutti, P., Ghislotti, G., Bertoni, S., Bonoldi, L., Cerofolini, G. F., Meda, L., Grilli, E., and Guzzi, M., Appl. Phys. Lett. 66, 851 (1995)Google Scholar
8. Brongersma, M. L., Kik, P. G., Polman, A., Min, K.S., and Atwater, H. A., Appl. Phys. Lett. 76, 351 (2000)Google Scholar
9. Vinciguerra, V., Franzó, G., Priolo, F., Iacona, F., Spinella, C., J. Appl. Phys. 87, 8165 (2000)Google Scholar
10. Valenta, J., Dian, J., Luterova, K., Knapek, P., Pelant, I., Nikl, M., Muller, D., Grob, J.J., Rehspringer, J.L., and Honerlage, B., Eur. Phys. J. D 8, 395 (2000)Google Scholar
11. Zhuralev, K. S., Gilinsky, A. M., and Kobitsky, A. Y., Appl. Phys. Lett. 73, 2962 (1998)Google Scholar
12. Allan, G., Delerue, C., and Lannoo, M., Phys. Rev. Lett. 76, 2961 (1996)Google Scholar
13. Vasiliev, I., Chelikowski, J.R., and Martin, R.M., Phys. Rev. B 65, 121302 (2002)Google Scholar
14. Kovalev, D., Diener, J., Heckler, H., Polisski, G., Künzner, N., and Koch, F., Phys. Rev. B 61, 4485 (2000)Google Scholar
15. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., and Delerue, C., Phys. Rev. Lett. 82, 197 (1999)Google Scholar
16. López, M., Garrido, B., Garcia, C., Pellegrino, P., Pérez-Rodríguez, A., Morante, J.R., Bonafos, C., Carrada, M., and Claverie, A., Appl. Phys. Lett. 80, 1637 (2002)Google Scholar
17. White, C.W., Budai, J.D., Withrow, S.P., Zhu, J.G., Sonder, E., Zuhr, R.A., Meldrum, A., Henderson, D.O. and Prawer, S., Nucl. Inst. and Methods in Physics Research B 141, 228 (1998)Google Scholar
18. Withrow, S.P., White, C.W., Meldrum, A., and Budai, J.D., J. Appl. Phys. 86, 396 (1999)Google Scholar
19.See , Kovalev et al., Phys. Stat. Sol. (b) 215, 871 (1999) and references therein.Google Scholar
20 Allan, G., Delerue, C., and Niquet, M., Phys. Rev. B 63, 205301 (2001)Google Scholar
21. Klimov, V.I., Schwarz, Ch. J., McBranch, C.W., and White, C.W., Appl. Phys. Lett. 73, 2603 (1998)Google Scholar
22. Kenyon, A.J., Chryssou, C.E., Pitt, C.W., Shimizu-Iwayama, T., Hole, D.E., Sharma, N., and Humphreys, C.J., J. Appl. Phys. 91, 367 (2002)Google Scholar