Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-06T22:51:13.223Z Has data issue: false hasContentIssue false

Luminescence of Rare Earth Doped Porous Silicon

Published online by Cambridge University Press:  10 February 2011

T. Kimura
Affiliation:
Univ. Electro-Communications, Chofu-shi, Tokyo 182, Japan
I. Hosokawa
Affiliation:
Univ. Electro-Communications, Chofu-shi, Tokyo 182, Japan
Y. Nishida
Affiliation:
Univ. Electro-Communications, Chofu-shi, Tokyo 182, Japan
T. Dejima
Affiliation:
Univ. Electro-Communications, Chofu-shi, Tokyo 182, Japan
R. Saito
Affiliation:
Univ. Electro-Communications, Chofu-shi, Tokyo 182, Japan
T. Ikoma
Affiliation:
TI Tsukuba Research Development Center, Tsukuba-shi, Ibaragi 305, Japan
Get access

Abstract

Photoluminescence characteristics of porous silicon layers (PSLs) doped with Er or Yb ions are studied. 10μm thick PSLs with a luminescence centered at ∼ 0.8μm are formed by anodic etching of p-type silicon wafers of several Ω-cm resistivity. Rare-earth ions are electrochemically incorporated into PSLs. The Er3+-related luminescence at 1.54μm as well as the Yb3+-related luminescence at 1.0μm is observed at room temperature after annealing at high temperatures (>900°C). The Er-related luminescence is enhanced after annealing in O2, whereas the Yb3+-related luminescence needs oxygen-free atmosphere (H2) for the optical activation. The luminescence decay time of the rare earth ions as well as the host PSLs is measured and the energy transfer mechanism is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Schneider, J., Pomrenke, G., Schneider, J., Windscheif, J., and Axmann, A., J. Cryst. Growth 64, p. 165 (1983).Google Scholar
2. Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W. and Schneider, J., Appl. Phys. Lett. 46, p.381 (1985).Google Scholar
3. Kimura, T., Yokoi, A., Horiguchi, H., Saito, R., Ikoma, T. and Sato, A., Appl. Phys. lett. 65, p. 983 (1994).Google Scholar
4. Kimura, T., Yokoi, A., Nishida, Y., Saito, R., Yugo, S. and Ikoma, T., Appl. Phys. lett. 67, p.2687 (1995).Google Scholar
5. Tsai, C., Li, K.-H., Sarathy, J., Shin, S., Cambell, J.C., Hance, B.K. and White, J. M., Appl. Phys. Lett., 59, 28142816 (1991).Google Scholar
6. Ookubo, N., Ono, H., Ochiai, Y., Mochizuki, Y., and Matsui, S., Appl. Phys. Lett., 61, 940942 (1992).Google Scholar
7. Takahei, K., Taguchi, A., Nakagome, H., Uwai, K. and Whitney, P. S., J. Appl. Phys. 66, 4941 (1989).Google Scholar