Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T01:56:57.893Z Has data issue: false hasContentIssue false

Luminescence of doped nanocrystalline ZnSe

Published online by Cambridge University Press:  21 March 2011

J. F. Suyver*
Affiliation:
Debye Institute, Physics and Chemistry of Condensed Matter, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
S. F. Wuister
Affiliation:
Debye Institute, Physics and Chemistry of Condensed Matter, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
T. van der Beek
Affiliation:
Debye Institute, Physics and Chemistry of Condensed Matter, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
J. J. Kelly
Affiliation:
Debye Institute, Physics and Chemistry of Condensed Matter, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
A. Meijerink
Affiliation:
Debye Institute, Physics and Chemistry of Condensed Matter, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
*
1Corresponding author. Tel.: +31 – 30 – 253 2214; Fax: +31 – 30 – 253 2403; E-mail: j.f.suyver@phys.uu.nl
Get access

Abstract

Luminescence of nanocrystalline ZnSe:Mn2+ and ZnSe:Cu2+ prepared via an organic chemical synthesis method are described. The spectra show distinct ZnSe, Mn2+ and Cu2+ related emissions, all of which are excited via the host lattice. The Mn2+ emission wavelength depends on the concentration of Mn2+incorporated into the ZnSe lattice, which is attributed to the presence of Mn2+ pair-states at higher concentrations. The ZnSe:Cu2+ luminescence was studied as a function of the crystal-size. Temperature-dependent photoluminescence spectra and photoluminescence lifetime measurements are also presented and the results are compared to those of Mn2+ and Cu2+ in bulk ZnSe.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Greenham, N. C., Peng, X. and Alivisatos, A. P., Phys. Rev. B, 1996, 54, 17628.Google Scholar
[2] Dabbousi, B. O., Bawendi, M. G., Onitsuka, O. and Rubner, M. F., Appl. Phys. Lett., 1995, 66, 1316.Google Scholar
[3] Brus, L., J. Phys. Chem., 1986, 90, 2555.Google Scholar
[4] Bhargava, R. N., Gallagher, D., Hong, X. and Nurmikko, A., Phys. Rev. Lett., 1994, 72, 416.Google Scholar
[5] Yu, I., Isobe, T. and Senna, M., J. Phys. Chem. Solids, 1996, 57, 373.Google Scholar
[6] Suyver, J. F., Bakker, R., Meijerink, A. and Kelly, J. J., Phys. Stat. Sol. B 224, 307 (2001).Google Scholar
[7] Leeb, J., Gebhardt, V., Müller, G., Su, D., Giersig, M., McMahon, G. and Spanhel, L., J. Phys. Chem. B, 1999, 103, 7839.Google Scholar
[8] Schoenmakers, G. H., Bakkers, E. P. A. M. and Kelly, J. J., J. Electrochem. Soc., 1997, 144, 2329.Google Scholar
[9] Suyver, J. F., Wuister, S. F., Kelly, J. J. and Meijerink, A., Phys. Chem. Chem. Phys., 2000, 2, 5445.Google Scholar
[10] Norris, D. J., Yao, N., Charnock, F. T. and Kennedy, T. A., Nano Lett., 2001, 1, 3.Google Scholar
[11] Hines, M. A. and Guyot-Sionnest, P., J. Phys. Chem. B, 1998, 108, 3655.Google Scholar
[12] Murray, C. B., Norris, D. J. and Bawendi, M. G., J. Am. Chem. Soc., 1993 115, 8706.Google Scholar
[13] Waldmann, H., Benecke, C., Busse, W., Gumlich, H.-E. and Krost, A., Semicond. Sci. Technol., 1989, 4, 71.Google Scholar
[14] Ronda, C. R. and Amrein, T., J. Lumin., 1996, 69, 245.Google Scholar
[15] Stutenbäaumer, U., Gumlich, H.-E. and Zuber, H., Phys. Stat. Sol. B, 1989, 156, 561.Google Scholar
[16] MacKay, J. F., Becker, W. M., Spalec, J. and Debska, U., Phys. Rev. B, 1990, 42, 1743.Google Scholar
[17] Xue, J., Ye, Y., Medina, F., et al., J. Lumin., 1998, 78, 173.Google Scholar
[18] Varshni, Y. P., Physica, 1967, 34, 149.Google Scholar
[19] Jones, G. and Woods, J., J. Lumin., 1974, 9, 389.Google Scholar