Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-03T01:47:03.874Z Has data issue: false hasContentIssue false

Low-voltage graphene transistors based on self-assembled monolayer nanodielectrics

Published online by Cambridge University Press:  28 May 2012

Cecilia Mattevi
Affiliation:
Materials Department, Imperial College London, London SW7 2AZ, U.K.
Florian Colléaux
Affiliation:
Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2BW, U.K.
Hokwon Kim
Affiliation:
Materials Department, Imperial College London, London SW7 2AZ, U.K.
Manish Chhowalla
Affiliation:
Materials Department, Imperial College London, London SW7 2AZ, U.K. (current address) Materials Science and Engineering Rutgers University, Piscataway, New Jersey 08854, U.S.A.
Thomas D. Anthopoulos
Affiliation:
Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2BW, U.K.
Get access

Abstract

We demonstrate low operating voltage (<|1.5| V) chemical vapour deposited (CVD) graphene transistors using solution processable organic self-assembled monolayers (SAMs) as nanodielectrics. The transistors show weak extrinsic doping, hysteresis-free operation, low gate-leakage current and good operating stability with bias-stress free characteristics. Most importantly we demonstrate that the Dirac potential can be finely tuned by modifying the molecular end-group of the SAMs without compromising the electrical characteristics of the transistors.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., and Ruoff, R. S., Science 324, 13121314 (2009).CrossRefGoogle Scholar
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., Rev. Mod. Phys. 81, 109162 (2009).CrossRefGoogle Scholar
Wu, Y., Lin, Y.-m., Bol, A. A., Jenkins, K. A., Xia, F., Farmer, D. B., Zhu, Y., and Avouris, P., Nature 472, 7478 (2011).CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y. I., Kim, Y.-J., Kim, K. S., Ozyilmaz, B., Ahn, J.-H., Hong, B. H., and Iijima, S., Nature Nanotechnol. 5, 574578 (2010).CrossRefGoogle Scholar
DiBenedetto, S. A., Facchetti, A., Ratner, M. A., and Marks, T. J., Adv. Mater. 21, 14071433 (2009).CrossRefGoogle Scholar
Kim, S., Nah, J., Jo, I., Shahrjerdi, D., Colombo, L., Yao, Z., Tutuc, E., and Banerjee, S. K., Appl. Phys. Lett. 94, 062107 (2009).CrossRefGoogle Scholar
Klauk, H., Zschieschang, U., Pflaum, J., and Halik, M., Nature 445, 745748 (2007).CrossRefGoogle Scholar
Alaboson, J. M. P., Wang, Q. H., Emery, J. D., Lipson, A. L., Bedzyk, M. J., Elam, J. W., Pellin, M. J., and Hersam, M. C., ACS Nano 5, 52235232 (2011).CrossRefGoogle Scholar
Wang, X., Xu, J.-B., Wang, C., Du, J., and Xie, W., Adv. Mater. 23, 24642468 (2011).CrossRefGoogle Scholar
Lafkioti, M., Krauss, B., Lohmann, T., Zschieschang, U., Klauk, H., Klitzing, K. v., and Smet, J. H., Nano Lett. 10, 11491153 (2010).CrossRefGoogle Scholar
Liu, Z., Bol, A. A., and Haensch, W., Nano Lett. 11, 523528 (2010).CrossRefGoogle Scholar
Yan, Z., Sun, Z., Lu, W., Yao, J., Zhu, Y., and Tour, J. M., ACS Nano 5, 15351540 (2011).CrossRefGoogle Scholar
Kim, H., Mattevi, C., Calvo, M. R., Oberg, J. C., Artiglia, L., Agnoli, S., Hirjibehedin, C. F., Chhowalla, M., and Saiz, E., ACS Nano 6, 36143623 (2012).CrossRefGoogle Scholar
Kwok, D. Y. and Neumann, A. W., Adv. Colloid Interface Sci. 81, 167249 (1999).CrossRefGoogle Scholar
Ball, J. M., Wobkenberg, P. H., Colleaux, F., Heeney, M., Anthony, J. E., McCulloch, I., Bradley, D. D. C., and Anthopoulos, T. D., Appl. Phys. Lett. 95, 103310 (2009).CrossRefGoogle Scholar
Ball, J. M., Wöbkenberg, P. H., Kooistra, F. B., Hummelen, J. C., de Leeuw, D. M., Bradley, D. D. C., and Anthopoulos, T. D., Synt. Met. 159, 23682370 (2009).CrossRefGoogle Scholar
Wobkenberg, P. H., Ball, J., Kooistra, F. B., Hummelen, J. C., Leeuw, D. M. d., Bradley, D. D. C., and Anthopoulos, T. D., Appl.Phys.Lett. 93, 013303 (2008).CrossRefGoogle Scholar
Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L., and Hone, J., Nature Nanotechnol. 5, 722726 (2010).CrossRefGoogle Scholar
Fratini, S. and Guinea, F., Phys. Rev. B 77, 195415 (2008).CrossRefGoogle Scholar
Mattevi, C., Colleaux, F., Kim, H., Park, K. T., Chhowalla, M., Anthopoulos, T.D., Under review (2012).Google Scholar
Kobayashi, S., Nishikawa, T., Takenobu, T., Mori, S., Shimoda, T., Mitani, T., Shimotani, H., Yoshimoto, N., Ogawa, S., and Iwasa, Y., Nature Mater. 3, 317322 (2004).CrossRefGoogle Scholar
Chua, L.-L., Zaumseil, J., Chang, J.-F., Ou, E. C. W., Ho, P. K. H., Sirringhaus, H., and Friend, R. H., Nature 434, 194199 (2005).CrossRefGoogle Scholar