Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T11:58:09.582Z Has data issue: false hasContentIssue false

Low-Temperature Deposition of ZrC thin films from a Single-Source Precursor

Published online by Cambridge University Press:  22 February 2011

David C. Smith
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Rodrigo R. Rubiano
Affiliation:
Department of Nuclear Engineering, MIT, Cambridge, MA 02139
Matthew D. Healy
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Robert W. Springer
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Stable zirconium carbide thin films have been deposited from a singlesource organometallic precursor, tetraneopentyl zirconium, at substrate temperatures above 500 °C. Materials deposited above this temperature are crystalline by X-ray diffraction. A metal to carbon ratioof 1:2 is observed by Auger electron spectroscopy depth profiling. X-ray photoelectron spectroscopy indicates the zirconium is single phase. The observed spectra correspond well to spectra for zirconium carbide standards. Carbon XPS reveals carbidic and graphitic or hydrocarbon species with a third unknown carbon species. Elastic recoil detection finds a large, up to 16%, hydrogen content in the thin film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schwarzkopf, P., Kieffer, P., Leszynski, W., and Benesovsky, F., Refractory Hard Metals (Macmillan, New York, 1953).Google Scholar
2. Storms, E.K., The Refractory Carbides (Academic, New York, 1967).Google Scholar
3. Toth, L. E., Transition Metal Carbides and Nitrides (Academic, New York, 1971).Google Scholar
4. Samsonov, G. V., Ed., Refractory Carbides (Consultants Bureau, New York, 1974).Google Scholar
5. Blair, H. T., Carroll, D. W., and Matthews, R. B., in Proceedings of the 8th Symposium on Space Nuclear Power Systems, (Albuquerque, NM, 1990).Google Scholar
6. Girolami, G. S. and Gozum, J. E., MRS Symp. Proc. 168, 319 (1990), and references therein.Google Scholar
7. Rutherford, N. M, Larson, C. E., and Jackson, R. L., MRS Symp. Proc. 131, 439 (1989).Google Scholar
8. Stupik, P. D., Cheatham, L. K., Graham, J. J., and Barron, A. R., MRS Symp. Proc. 168, 363(1990).Google Scholar
9. Huchet, G. and Teyssandier, F., in Proceedings of the Eleventh International Conference on Chemical Vapor Deposition, edited by Spear, K. E. and Cullen, G. W. (The Electrochemical Society, Pennington, NJ, 1990) pp. 703709.Google Scholar
10. Maury, F. and Ossola, F., Thin Solid Films 207, 82 (1992).Google Scholar
11. Davidson, P. J., Lappert, M. F., and Pearce, R., J. Organomet. Chem. 57, 269 (1973).Google Scholar
12. Girolami, G. S., Jensen, J. A., Pollina, D. M., Williams, W. S., Kaloyeros, A. E., and Alloca, C. M., J. Am. Chem. Soc. 109, 1579 (1987).Google Scholar
13. Deconvolution routines were written at Los Alamos National Laboratory.Google Scholar
14. Sample provided by Stark, W. A. of Los Alamos National Laboratory.Google Scholar
15. Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, Readings, 1978).Google Scholar
16. Vossen, J. L. and Kern, W., Eds., Thin Film Processes II (Academic, New York, 1991).Google Scholar
17. Kaloyeros, A. E., Williams, W. S., Brown, F. C., Greene, A. E., and Woodhouse, J. B., Phys. Rev. B 37, 771 (1988).Google Scholar
18. Fix, R., Gordon, R. G., Hoffman, D. M., Chem. Mater. 3, 1138 (1991).Google Scholar