Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T15:17:30.705Z Has data issue: false hasContentIssue false

Low-Field Electron Emission Properties from Intrinsic and S-Incorporated Nanocrystalline Carbon Thin Films Grown by Hot- Filament CVD

Published online by Cambridge University Press:  17 March 2011

S. Gupta
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, P O Box 23343, PR00931, USA
B. R. Weiner
Affiliation:
Department of Chemistry, University of Puerto Rico, San Juan, P O Box 23346, PR00931, USA
B. L. Weiss
Affiliation:
Department of Chemistry, University of Puerto Rico, San Juan, P O Box 23346, PR00931, USA
G. Morell
Affiliation:
Department of Physical Sciences, University of Puerto Rico, San Juan, P O Box 23323, PR00931, USA
Kenyetta Johnson
Affiliation:
NSF-REU (CHE/9732391) summer 2000 participants
Oscar O. Oritz
Affiliation:
NSF-REU (CHE/9732391) summer 2000 participants
Get access

Abstract

Results are reported on the electron field emission properties of intrinsic and S- incorporated nanocrystalline carbon (n-C:S) thin films grown on molybdenum substrates by hotfilament CVD technique from methane-hydrogen (CH4/H2) and hydrogen sulphide-hydrogen (H2S/H2) gas pre mixtures respectively. The field emission properties for the S-incorporated films were investigated as a function of substrate temperature (TS). Lowest turn-on field was observed at 4.5 V/μm for one of the sample, which was grown at 900 °C, demonstrating the effect of sulfur addition. The S-incorporation also causes microstructural and structural changes, as characterized with ex situ techniques such as SEM, AFM and Raman spectroscopy (RS). Sassisted films show smoother surfaces and finer-grained than those grown without it. The electron field emission properties of S-assisted films is also compared to the film grown without it (intrinsic) at a particular deposition temperature and the turn-on field was found to be almost half for the S-assisted film than for the non S-assisted film. The influence of growth temperature was also conducted and an inverse correlation was found with the turn-on field (Ec). These studies were performed in order attempt to “tailor-the-material” as a viable cold cathode material by introducing the defecTS and altering the electronic structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Spindt, C. A., Brodie, I., Humphrey, L. and Westerberg, E. R., J. Appl. Phys. 47, 5248 (1976).Google Scholar
2. Castellano, J. A., Handbook of Display Technology (Academic, New York, 1992).Google Scholar
3. Jaskie, J. E., Mater. Res. Bull. 21, 59 (1996).Google Scholar
4. Robertson, J., Mater. Res. Soc. Symp. Proc. 509, 8388 (1998) and references therein.Google Scholar
5. Hart, A., Satyanarayana, B. S., Milne, W. I. and Robertson, J., Diamond and Related Materials, 8, 809 (1999).Google Scholar
6. Karabutov, A. V., Konov, V. I., Pimenov, S. M., Obraztsova, E. D., Frolov, V. D., Pereverzev, V. G. and Smolin, A. A., J. of Wide Bandgap Materials 7, 68 (1999).Google Scholar
7. Himpsel, F. J., Knapp, J. A., Vechten, J. A. Van and Eastman, D. E., Phys. Rev. B 20, 624627 (1979); J. Van der Weide and R. J. Nemanich, Appl. Phys. Lett. 62, 1878-1880 (1993).Google Scholar
8. Amartunga, G. A. J., Silva, S. R. P., Appl. Phys. Lett. 68, 2529 (1996); M. W. Geis, et. al., IEEE Trans. ED Lett. 12, 456 (1991).Google Scholar
9. Okano, K., Koizumi, S., Ravi, S. Silva, P., and Amartunga, G. A. J., Nature, 381, 140 (1996); C. Wang, A. Garcia, D. C. Ingran, M. Lake and M. E. Kordesch, Electronics Lett. 27, 1459 (1991); A. A. Tallin, L. S. Pan, McCarty, H. J. Doerr, R. F. Bunshah, Appl. Phys. Lett. 69, 3842 (1996);B. F.Coll, J. E.J. L.Markahm E. P.Menu A. A.Talin P.VonAllmen, Mater. Res. Soc. Symp. Proc.498 xx(1998).Google Scholar
10. Kalish, R., Reznik, A., Uzan-Saguy, C. and Cytermann, C., Appl. Phys. Lett. 76, 757 (2000) and references therein.Google Scholar
11. Morell, G., Canales, E., and Weiner, B. R., Diamond and Related Materials 8 160 (1999).Google Scholar
12. Hong, B., Lee, J., Collins, R. W., Kuang, Y., Drawl, W., Messier, R., Song, T. T., and Strausser, Y. E., 6, 55 (1997) and references therein.Google Scholar
13. Groning, O., Kuttel, O. M., Groning, P., and Schlapbach, L., J. Vac. Sci. Technol. B 17, 1970 (1999) and references therein.Google Scholar
14. Nemanich, R. J., Glass, J. T., Luckovsky, G., and Sroder, R. E., J. Vac. Sci. Technol. A 6, 1783 (1988).Google Scholar
15. Weiss, B. L., Badzian, A., Pilione, L., Badzian, T. and Drawl, W., J. Vac. Sci. Technol. B 16, 681 (1998).Google Scholar
16. Zhu, W., Kochanski, G. P. and Jin, S., Mater. Res. Soc. Symp. Proc. 509, 5358 (1998); W. Zhu, G. P. Kochanski, S. Jin and L. Seibles, J. Vac. Sci. Technol. B 14, 2011 (1996).Google Scholar
17. Pananakis, G., Ghibando, G., Kies, R. and Papadas, C., J. Appl. Phys. 78, 2635 (1995). (MOS)Google Scholar