Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T08:28:56.992Z Has data issue: false hasContentIssue false

Low-Energy, Pulsed-Laser Irradiation of Amorphous Silicon: Melting and Resolidification at Two Fronts

Published online by Cambridge University Press:  25 February 2011

W. Sinke
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098SJ Amsterdam, The Netherlands
F.W. Saris
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098SJ Amsterdam, The Netherlands
Get access

Abstract

After low-energy pulsed-laser irradiation of Cu-implanted silicon, a double-peak structure is observed in the Cu concentration profile, which results from the occurrence of two melts. From Cu surface segregation we calculate the depth of the surface melt. Cu segregation near the position of the amorphous-crystalline interface gives evidence for a self-propagating melt, moving from the surface region towards the crystalline substrate. Measurements of As-redistribution and of sheet resistance as a function of laser energy density in As-implanted silicon are consistent with the crystallization model which is derived from the effects as observed in Cu-implanted silicon.

The results imply a large difference in melting temperature, heat conductivity and heat of melting between amorphous silicon and crystalline silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Olson, G.L., Roth, J.A., Hess, L.D. and Narayan, J., Proc.of the US-Japan Seminar on S.P.E. and Interface Kinetics (1983) and references therein.Google Scholar
2. Baeri, P., Foti, G., Poate, J.M. and Cullis, A.G., Phys.Rev.Lett. 45, 2036 (1980).Google Scholar
3. Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G. and Chew, N.G., Phys.Rev.Lett. 52, 2360 (1984).Google Scholar
4. Webber, H.C., Cullis, A.G. and Chew, N.G., Appl.Phys.Lett. 43, 669 (1983).Google Scholar
5. Narayan, J., White, C.W., Holland, O.W. and Aziz, M.J., J.Appl.Phys. 56, 1821 (1984).Google Scholar
6. Lowndes, D.H., Wood, R.F. and Narayan, J., Phys.Rev.Lett. 52, 561 (1984).Google Scholar
7. Wood, R.F., Lowndes, D.H. and Narayan, J., Appl.Phys.Lett. 44, 770 (1984).Google Scholar
8. Narayan, J. and White, C.W., Appl.Phys.Lett. 44, 35 (1984).Google Scholar
9. Baeri, P., Campisano, S.U., Foti, G. and Rimini, E., Phys.Rev.Lett. 41, 1246 (1978).Google Scholar
10. Miyao, M. et al. , J.Appl.Phys. 51, 4139 (1980).Google Scholar
11. Baeri, P. and Campisano, S.U. in Laser Annealing of Semiconductors - ed. by Poate, J.M. and Mayer, J.W., Academic Press 1982, p.500.Google Scholar
12. Chu, W.K., Mayer, J.W. and Nicolet, M.A., Backscattering Spectrometry, Academic Press, New York 1978.Google Scholar
13. See ref.11, p.75.Google Scholar
14. Bagley, B.G. and Chen, H.S. in Laser-Solid Interactions and Laser Processing -ed. by Ferris, S.D. et al. , A.I.P.Conf.Proceedings no.50 (1979) p.97.Google Scholar
15. Spaepen, F. and Turnbull, D., ibid 50, 73 (1979).Google Scholar
16. See ref.11, p.32.Google Scholar