Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T01:25:04.568Z Has data issue: false hasContentIssue false

Low Temperature Si Oxidation with Excimer Lamp Sources

Published online by Cambridge University Press:  10 February 2011

Ian W. Boyd
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
Jun-Ying Zhang
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
Get access

Abstract

The principles of vacuum ultraviolet (VUV) and ultraviolet (UV) light generated from a new type of excimer lamp are described. Direct photo-oxidation of silicon at a temperature of 250°C has been investigated using a Xe2* excimer lamp operating at a wavelength of 172 nm. The induced reaction rate of 0.1 nm/min is 90 times greater than thermal oxidation at 612°C. Results will be compared to those previously obtained by a low pressure mercury lamp and conventional furnace oxidation. Ozone plays an extremely important role in the reaction enhancement which was found to be strongly dependent upon oxygen pressure with the highest rates being achievable below 10 mbar. Ellipsometry, Fourier transform infrared spectroscopy, capacitance-voltage, and current-voltage measurements have been employed to characterise the oxide films grown and indicate them to be high quality layers. The electrical properties of the as-grown films have been improved significantly by applying an additional UV/O3 annealing step. A simple model explaining the observed reduction in the leakage current after UV annealing is proposed whilst the current conduction mechanism within the films is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nagasawa, H., Kitajima, H., Kitayama, D., Okamoto, Y., and Ikoma, H., Jpn. J. Appl. Phys. 34, L1103 (1995).Google Scholar
2. Todorov, S. S. and Fossum, E.R., Appl. Phys. Lett. 52, 48 (1988).Google Scholar
3. Boyd, I.W. and Wilson, J.I.B., Thin Solid films 83, L173 (1981).Google Scholar
4. Nayar, V., Boyd, I.W., Goodall, F.N. and Arthur, G., Appl. Surf. Sci. 36, 134 (1989).Google Scholar
5. Nayar, V., Patel, P. and Boyd, I.W., Electronics Letters 26(30), 205 (1989).Google Scholar
6. Boyd, I.W., Craciun, V. and Kazor, A., Jpn. J. Appl. Phys. 32, 6141 (1993).Google Scholar
7. Eliasson, B. and Kogelschatz, U., Appl. Phys. B46, 299 (1988).Google Scholar
8. Kogelschatz, U., Appl. Surf. Sci. 54, 410 (1992).Google Scholar
9. Zhang, J.-Y. and Boyd, Ian W., J. Appl. Phys. 80, 633 (1996).Google Scholar
10. Bergonzo, P., Kogelschatz, U., and Boyd, I.W., Appl. Surf. Sci. 69, 393 (1993).Google Scholar
11. Esrom, H., Demny, J., and Kogelschatz, U., Chemtronics 4, 202 (1989).Google Scholar
12. Esrom, H., Zhang, J.-Y., and Kogelschatz, U., Mat. Res. Symp. Proc. 236, 39 (1992).Google Scholar
13. Bergonzo, P. and Boyd, I.W., Appl. Phys. Lett. 63, 1757 (1993).Google Scholar
14. Kazor, A. and Boyd, I.W., Appl. Surf. Sci. 54, 460 (1992).Google Scholar
15. Kazor, A. and Boyd, I.W., Photons and Low Energy particles in Surface Processing, eds. Ashby, C.I.H., Brannon, J.H. and Pang, S.W., (MRS 1992) Vol. 236, p371.Google Scholar
16. Cracium, V., Reader, A.H., Kersten, W., Timmers, J., Gravesteijn, D.J. and Boyd, I.W., Thin Solid films 222, 145 (1992).Google Scholar
17. Zhang, J.-Y. and Boyd, I.W., Electronics Letters, 32, 2097 (1996).Google Scholar
18. Malinin, A.N., Shuaibov, A.K. and Shevera, V.S., J. Appl. Spectrosc, 32, 313 (1980).Google Scholar
19. Volkova, G.A., Kirillova, N.N., Pavlovskaya, E.N. and Yakovleva, A.V., J. Appl. Spectrosc. 41, 1194 (1984).Google Scholar
20. Eliasson, B. and Kogelschatz, U., Proc. 40 Ann. Gaseous Electron. Conf. (GEC 87), Atlanta 1987, p. 174.Google Scholar
21. Kogelschatz, U., Pure & Appl. Chem. 62, 1667 (1990).Google Scholar
22. Neiger, M., Schorpp, V. and Stockwald, K., Proc. 41. Ann. Gaseous Electron. Conf. (GEC 88), Minneapolis p. 74, 1988.Google Scholar
23. Eliasson, B. and Gellert, B., J. Appl. Phys. 68, 2026 (1990).Google Scholar
24. Patel, P., Boyd, I.W., Appl. Surf. Sci., 46, 352 (1990).Google Scholar
25. Esrom, H. and Kogelschatz, U., Appl. Surf. Sci., 54, 440 (1992).Google Scholar
26. Kessler, F. and Bauer, G.H., Appl. Surf. Sci., 54, 430 (1992).Google Scholar
27. Cachoncinlle, C., Pouvesle, J.M., Davanloo, F., Coogan, J.J. and Collins, C.B., Opt. Coram, 79 (1990) 41.Google Scholar
28. Keohler, H.A., Ferderber, L.J., Redhead, D.L., Ebert, P.J., Phys. Rev. A9(2), 768 (1974).Google Scholar
29. Langhoff, H., Opt. Comm., 68(1), 31 (1988).Google Scholar
30. Griegel, T., Drotleff, H.W., Hammer, J.W., and Petkau, K., J. Chem. Phys, 93(7), 4581 (1990).Google Scholar
31. Gellert, B., Kogelschatz, U., Appl. Phys. B52, 14 (1991).Google Scholar
32. Eliasson, B., Hirth, M. and Kogelschatz, U., J. Phys D: Appl. Phys. 20, 1421 (1987).Google Scholar
33. Esrom, H. and Kogelschatz, U., Thin Solid films, 218, 231 (1992).Google Scholar
34. Kogelschatz, U., Appl. Surf. Sci. 54, 410 (1992).Google Scholar
35. Kazor, A. and Boyd, I.W., J. Appl. Phys. 75, 227 (1994).Google Scholar
36. Sen, P.N. and Thorpe, M.F., Phys. Rev. B15, 4030 (1977).Google Scholar
37. Boyd, I.W. and Wilson, J.I.B., J. Appl. Phys. 53, 4166 (1982).Google Scholar
38. Richter, H. and Orlowski, T.E., J. Appl. Phys. 56, 2351 (1984).Google Scholar
39. Eftekhari, G., J. Electrochem. Soc. 140, 787 (1993).Google Scholar
40. Shinriki, H. and Nakata, M., IEEE Tansactions on Electron Devices 38, 455 (1991).Google Scholar
41. Pliskin, W.A., Thin Solid films 2, 1 (1968).Google Scholar
42. Boyd, I.W. and Wilson, J.I.B., J. Appl. Phys. 62, 3195 (1987).Google Scholar
43. Shih, D.K., Chang, W.T., Lee, S.K., Ku, Y.H., and Kwong, D.L., Appl. Phys. Lett. 52, 1698 (1988).Google Scholar
44. Sze, S.M., Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.Google Scholar