Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T12:08:12.652Z Has data issue: false hasContentIssue false

Low Temperature Remote Plasma Assisted Jet Vapor Deposition of Silicon Nitride

Published online by Cambridge University Press:  10 February 2011

J. Veteran
Affiliation:
Motorola APRDL, Austin TX, 78721
C. Hobbs
Affiliation:
Motorola APRDL, Austin TX, 78721
R. Hegde
Affiliation:
Motorola APRDL, Austin TX, 78721
P. Tobin
Affiliation:
Motorola APRDL, Austin TX, 78721
V. Wang
Affiliation:
Motorola APRDL, Austin TX, 78721
H. Tseng
Affiliation:
Motorola APRDL, Austin TX, 78721
G. Kenig
Affiliation:
Motorola APRDL, Austin TX, 78721
M. Hartig
Affiliation:
Motorola APRDL, Austin TX, 78721
T. Tamagawa
Affiliation:
Jet Process Corp., New Haven CT 06511
R. Doran
Affiliation:
Jet Process Corp., New Haven CT 06511
P. Makowicz
Affiliation:
Jet Process Corp., New Haven CT 06511
J. Schmitt
Affiliation:
Jet Process Corp., New Haven CT 06511
B. Halpern
Affiliation:
Jet Process Corp., New Haven CT 06511
J. Z. Zhang
Affiliation:
Jet Process Corp., New Haven CT 06511
Get access

Abstract

As MOSFET dimensions are aggressively scaled, minimizing the thermal budget becomes critical for limiting the diffusion of channel profiles. Unfortunately, high quality dielectrics with low deposition temperatures have not been readily available. Typical room temperature dielectrics are porous and electrically leaky. A promising technique for low temperature dielectric deposition is Jet Vapor Deposition (JVD). [1] Two coaxial quartz nozzles spray the process gases to the substrate surface at super-sonic speeds while a microwave cavity generates a plasma in the nozzle. [2] We have successfully deposited silicon nitride films using SiH4/He and N2/He gas mixtures. These are the first reported JVD results on 200 mm wafers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Schmitt, J., Halpern, B. U.S. Patent 4788082 (1988).Google Scholar
2) Schmitt, J., Halpern, B. U.S. Patent 5256205 (1993).Google Scholar
3) Burshah, F., (ed.) “Handbook of Deposition Technologies and Coatings”- Chapter 16, “Jet Vapor Deposition”, Halpern, B., Schmitt, J., Noyes Publications, Park Ridge NJ, 1994.Google Scholar
4) Wang, X., Ma, T.P., Cui, G., Tamagawa, T., Golz, J., Karecki, S., Halpern, B., Schmitt, J., “Highly Reliable Silicon Nitride Films Made by Jet Vapor Deposition1994 Int'l Conf. on Solid State Devices, p. 856.Google Scholar
5) Tseng, H., Tsui, P., Tobin, P., Mogab, J., Khare, M., Veteran, X.J., Hartig, M., Kenig, G., Wang, V., Blum, R., Halpern, B., Cui, G., Schmitt, J. “Application of JVD Nitride Gate Dielectric to a 0.35 Micron CMOS Process for Reduction of Gate Leakage Current and Boron Penetration” 1997 IEDMGoogle Scholar
6) Khare, M., Guo, X., Wang, X., Ma, J.P., “Ultra-thin Silicon Nitride Gate Dielectric for DeepSub-Micro CMOS Devices” 1997 VLSI Tech. Digest p 51.Google Scholar