Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T07:41:34.237Z Has data issue: false hasContentIssue false

The Low Temperature Polysilicon TFT Technology for Manufacturing of Active Matrix Liquid Crystal Displays

Published online by Cambridge University Press:  15 February 2011

Tatsuo Morita
Affiliation:
Central Research Laboratories Sharp Corp.,Tenri Nara, Japan
Shuhei Tsuchimoto
Affiliation:
Central Research Laboratories Sharp Corp.,Tenri Nara, Japan
Nobuo Hashizume
Affiliation:
Central Research Laboratories Sharp Corp.,Tenri Nara, Japan
Get access

Abstract

The amorphous silicon thin transistor (a-Si TIFT) has successfully industrialized the active matrix liquid crystal displays (AMLCDs), which would get a vast market on the basis of their wide potential use for displays. Whereas, the polysilicon TFT (p-Si TFT) also has been intensely investigated and intended to realize smarter AMLCDs, with monolithic peripheral circuits.

In this paper, we will discuss the applicable range of low temperature p-Si TFTs compared with high temperature p-Si TFTs. After reviewing the materials which comprise low temperature p-Si TFTs, we will introduce our self aligned aluminum gate process which could allow fast addressing even in enlarged AMLCDs in the future.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kennedy, E. F. et al, J. Appl. Phy., 48 (1977)Google Scholar
[2] Koyama, M. et al, J. Phys. C21 (1988) L695 Google Scholar
[3] Thompson, R.E. et al, Phys, Rev. B29 (1985) 889 Google Scholar
[4] Maekawa, S. et al, to be publishedGoogle Scholar
[5] Maekawa, S. et al, to be publishedGoogle Scholar
[6] Noguchi, T. et al, MRS. Sym. Proc. 146 (1989) 35 Google Scholar
[7] Mehlhaff, J. et al, AMLCD '93 Sym. Proc. (1993) 158 Google Scholar
[8] Greve, D.W. et al, AMLCD '93 Sym. Proc. (1993) 68 Google Scholar
[9] Mimura, A. et al, IEEE Trans. Electron Devices ED–36 (1989) 351 Google Scholar
[10] Lewis, A.G. et al, IEDM Technical Digest (1990) 843 Google Scholar
[11] Ohsima, H. et al, IEDM Technical Digest (1989) 157 Google Scholar
[12] Serikawa, T., IEDM Technical Digest (1988) 222 Google Scholar
[13] Fountain, G. G. et al, J. Appl. Phys. 63 (1988) 4744 Google Scholar
[14] Yoshinouchi, A. et al, MRS. Symp. Proc. 268 (1992) 363 Google Scholar
[15] Montillo, F. et al, J. Electrochem. Soc. 118 (1971) 1463 Google Scholar
[16] Ohno, E. et al, SSDM. Ext. Abs. (1993) 425Google Scholar
[17] Fossum, J. G. et al, IEEE Trans. Elect. Dev. ED–32 (1985) 1878 Google Scholar
[18] Nakazawa, K. et al, SID 90 Digest 311Google Scholar
[19] Morozumi, S. et al, SID 83 Digest 156Google Scholar
[20] Jackson, W. B., Phys. Rev. B 41 (1990) 1059 Google Scholar
[21] Lewis, A.G. et al, IEDM Technical Digest (1991) 575Google Scholar