Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T23:55:49.455Z Has data issue: false hasContentIssue false

Low Temiperature Band Transport in Alpha-Hexathienylene Thinfilm-Transistors

Published online by Cambridge University Press:  10 February 2011

L. Torsi
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill - NJ 07974 (USA).
A. Dodabalapur
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill - NJ 07974 (USA).
L. J. Rothberg
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill - NJ 07974 (USA).
A. W. P. Fung
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill - NJ 07974 (USA).
H. E. Katz
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill - NJ 07974 (USA).
Get access

Abstract

We provide experimental evidence of a transition from thermally activated hopping of small polarons to band transport of delocalized polarons in polycrystalline oligothiophene fieldeffect transistors. We demonstrate that these transport mechanisms are intrinsic, i.e. governed by material-specific parameters such as the electronic overlap integral and the polaron binding energy. At high temperatures the field-effect mobility decreases with decreasing temperature and the transport mechanism is thermally activated hopping. Below a critical temperature Tτ, the field-effect mobility abruptly increases by more than two orders of magnitude and the transport becomes band-like. This behavior is consistent with the theory T. Holstein developed in 1959 for small polaron transport.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Garnier, F., Hajalaoui, R., Yassar, A., Srivastava, P., Science 265, p. 1,684 (1994).Google Scholar
2. Dodabalapur, A., Katz, H.E., Torsi, L., and Haddon, R.C., Science 269, p. 1,560 (1995).Google Scholar
3. Dodabalapur, A., Torsi, L., Katz, H.E., Science 268, p. 270 (1995).Google Scholar
4. Holstein, T., Annals of Physics 8, pp. 325& 343 (1959). N.F. Mott, Metal-Isulator Transitions, Taylor & Francis, 1990, pp. 59–68.Google Scholar
5. Waragai, K., Akimiki, H., Hotta, S., Kano, H. and Sasaki, H., Synthetic Metals 55–57, p. 4,053 (1993).Google Scholar
6. Torsi, L., Dodabalapur, A., Rothberg, L., Fung, A.W.P. and Katz, H.E., submitted to Science (11.14.95).Google Scholar
7. Torsi, L., Dodabalapur, A. and Katz, H.E., J. Appl. Phys. 78, p. 1,088 (1995).Google Scholar
8. Katz, H.E., Torsi, L. and Dodabalapur, A., Chem. Mat. in press.Google Scholar
9. Lovinger, A.J., Davis, D.D., Ruel, R., Torsi, L., Dodabalapur, A. and Katz, H.E.,. J. Mat. Res. 10 (11), 2958 (1995).Google Scholar
10. Bredas, J.L., Street, G.B., Acc. Chem. Res. 18, p. 309 (1985).Google Scholar
11. Conwell, E.M., Choi, H.Y. and Jeyadev, S., J. Phys. Chem. 96, p. 2,827 (1992).Google Scholar
12. Horowitz, G., Hajlaoui, R. and Delannoy, P., J. Phys. III France 5, p. 355 (1995).Google Scholar