Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-20T19:07:36.129Z Has data issue: false hasContentIssue false

Low Pressure Omcvd Growth of GaAs on InP for Fet and Quantum Well Laser Fabrication

Published online by Cambridge University Press:  28 February 2011

R. Bhat
Affiliation:
Bellcore, 331 Newman Springs Rd., Red Bank, NJ 07701
Y-H. Lo
Affiliation:
Bellcore, 331 Newman Springs Rd., Red Bank, NJ 07701
C. Caneau
Affiliation:
Bellcore, 331 Newman Springs Rd., Red Bank, NJ 07701
C.J. Chang-Hasnain
Affiliation:
Bellcore, 331 Newman Springs Rd., Red Bank, NJ 07701
B.J. Skromme
Affiliation:
Bellcore, 331 Newman Springs Rd., Red Bank, NJ 07701
D.M. Hwang
Affiliation:
Bellcore, 331 Newman Springs Rd., Red Bank, NJ 07701
C.E. Zah
Affiliation:
Bellcore, 331 Newman Springs Rd., Red Bank, NJ 07701
M.A. Koza
Affiliation:
Bellcore, 331 Newman Springs Rd., Red Bank, NJ 07701
Get access

Abstract

Gallium arsenide epitaxial layers with excellent morphology have been grown by organometallic chemical vapor deposition (OMCVD) on (100) and 2-3° off (100) InP substrates by a modified two-step growth commonly used for GaAs on Si. The layers have been characterized by X-ray diffraction, cross-sectional transmission electron microscopy (TEM), low temperature photoluminescence (PL) and Hall measurements. 1 µm gate GaAs metal-semiconductor field effect transistors (MESFETs) with transconductances as high as 220 mS/mm have been fabricated. These MESFETs have been integrated with buried heterostructure and V-groove InGaAsP lasers. The V-groove laser -MESFET OEIC transmitter has been shown to be capable of direct modulation at 5 Gb/sec bit rate. Finally we have also demonstrated GaAs single quantum well lasers with threshold currents as low as 800 A/cm2for 50 µm wide broad area gain guided devices with 1.25 mm long cavities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Asano, K., Kasahara, K., and Itoh, T., IEEE Electron Device Lett. EDL–8, 289 (1987).CrossRefGoogle Scholar
2. Lo, Y-H., Bhat, R., and Lee, T.P., Electron Dev. Lett. 24, 865 (1988).Google Scholar
3. Suzuki, A., Itoh, T., Terakado, T., Kasahara, K., Asano, K., Inomoto, Y., Ishihara, H., Torikai, T., and Fujita, S., Electron. Dev. Lett. 22, 954 (1987).Google Scholar
4. Suzuki, A., Itoh, T., Terakado, T., Inomoto, Y., Kasahara, K., Asano, K., Fujita, S., and Torikai, T., ECOC Proceedings (1987).Google Scholar
5. Bhat, R., Koza, M.A., Chang, C.C., and Schwarz, S.A., J.Crystal Growth, 71, 7 (1986).Google Scholar
6. Akiyama, M., Kawarada, Y., Ueda, T., Nishi, S., and Kaminishi, K., J.Crystal Growth, 22, 490 (1986).Google Scholar
7. Horikawa, H., Ogawa, Y., Kawai, Y., and Sakuta, M., Appl. Phys. Lett. 53, 397 (1987).Google Scholar
8. Lum, R.M., J.K. Klingert, Davidson, B.A., and Lamont, M.G., Appl. Phys. Lett. 51 36 (1987).CrossRefGoogle Scholar
9. Hirsch, P.B., in Progress in Metal Physics, edited by Chalmers, B. and King, R. (Pergamon, New York, 1956), p.272.Google Scholar
10. Gerthsen, D., Ponce, F.A., Anderson, G.B., and Chung, H.F., 15th Annual Conf. on Phys. and Chem. of Semicond. Interfaces (1988).Google Scholar
11. Ashen, D.J., P.J.Dean, Hurle, D.T.J., Mullin, J.B., White, A.M., and Greene, P.D., J. Phys. Chem. Sol. 3, 1041 (1975).CrossRefGoogle Scholar
12. Shastry, S.K., Zemon, S., and Oren, M., J. Crystal Growth 77, 503 (1986).Google Scholar