Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-05T04:35:13.914Z Has data issue: false hasContentIssue false

Low loss EELS and EFTEM study of Bi2Te3 based bulk and nanomaterials

Published online by Cambridge University Press:  11 August 2011

N. Peranio
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, D‑72076 Tübingen, Germany
Z. Aabdin
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, D‑72076 Tübingen, Germany
W. Töllner
Affiliation:
Institut für Angewandte Physik, Universität Hamburg, Jungiusstrasse 11, D- 20355 Hamburg, Germany
M. Winkler
Affiliation:
Fraunhofer Institut Physikalische Messtechnik, Heidenhofstrasse 8, D-79110 Freiburg, Germany
J. König
Affiliation:
Fraunhofer Institut Physikalische Messtechnik, Heidenhofstrasse 8, D-79110 Freiburg, Germany
O. Eibl
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, D‑72076 Tübingen, Germany
K. Nielsch
Affiliation:
Institut für Angewandte Physik, Universität Hamburg, Jungiusstrasse 11, D- 20355 Hamburg, Germany
H. Böttner
Affiliation:
Fraunhofer Institut Physikalische Messtechnik, Heidenhofstrasse 8, D-79110 Freiburg, Germany
Get access

Abstract

Energy-filtered transmission electron microscopy (EFTEM) yields new possibilities for the investigation of Bi2Te3 based nanomaterials. Combined low-loss electron energy-loss spectroscopy (EELS) and energy-dispersive x-ray microanalysis (EDS) and energy-filtered TEM were applied on a Zeiss 912Ω TEM to investigate nanowires, thin films, and bulk materials. Multilayered Bi-Sb-Te nanowires with a diameter of 65 nm and a period of 200 nm and stoichiometric Bi2Te3 nanowires were grown by potential-pulsed electrochemical deposition. Tellurium elemental maps of the multilayered nanowires were obtained by two-window edge-jump ratio images (EJI). EDS chemical analysis showed that small Te fluctuations of 3 at.% yielded significant contrast in EJI. Energy-filtered TEM applied on nano-alloyed Bi2Te3 thin films grown by molecular beam epitaxy (MBE) revealed 10-20 nm thick Bi-rich blocking layers at grain boundaries. Plasmon spectroscopy by EELS was applied on Bi2(Te0.91Se0.09)3 bulk and yielded a plasmon energy of 16.9 eV. Finally, plasmon dispersion was measured for Bi2(Te0.91Se0.09)3 bulk by angle-resolved EELS, which yields a fingerprint of the anisotropy and the dimensionality of the electronic structure of the materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B 47, 12727 (1993).Google Scholar
2. Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B., Nature (London) 413, 597 (2001).Google Scholar
3. Larson, P., Phys. Rev. B 68, 155121 (2003).Google Scholar
4. German Research Council (DFG), priority program SPP1386 Nanostructured Thermoelectric Materials: Theory, Model Systems and Controlled Synthesis, http://134.100.105.117/ Google Scholar
5. Peranio, N. and Eibl, O., Phys. Status Solidi A 204, 3243 (2007).Google Scholar
6. Batson, P.E. and Silcox, J., Phys. Rev. B 27, 5224 (1983).Google Scholar
7. Nakajima, S., J. Phys. Chem. Solids 24, 479 (1963).Google Scholar
8. Lee, J.; Farhangfar, S.; Lee, J.; Cagnon, L.; Scholz, R.; Gösele, U.; Nielsch, K. Nanotechnology 19, No. 365701 (2008).Google Scholar
9. König, J.D., Böttner, H., Tomforde, J., and Bensch, W., Proceedings of the 26th International Conference on Thermoelectrics (ICT2007), Jeju Island, Korea, 2007, (IEEE, Piscataway, NJ, USA, 2007), pp. 390393.Google Scholar
10. Winkler, M., Ebling, D., Böttner, H., Kirste, L., Proceedings of 8th European Conference on Thermoelectrics, Italy, 2010, p. 26.Google Scholar
11. König, J.D., Winkler, M., Buller, S., Bensch, W., Schürmann, U., Kienle, L., Böttner, H., to be published in Journal of Electronic Materials, Special Issue: International Conference on Thermoelectrics 2010, (2011).Google Scholar
12. Peranio, N. et al. , (unpublished).Google Scholar
13. Peranio, N., Eibl, O., and Nurnus, J., J. Appl. Phys. 100, No. 114306 (2006).Google Scholar
14. Peranio, N. and Eibl, O., J. Appl. Phys. 103, No. 024314 (2008).Google Scholar
15. Mitome, M., Yamazaki, Y., Takagi, H., and Nakagiri, T., J. Appl. Phys. 72, 812 (1992).Google Scholar
16. Wang, Y.W., Kim, J.S., Kim, G.H., and Kim, K.S., Appl. Phys. Lett. 88, 143106 (2006).Google Scholar
17. Pichler, T., Knupfer, M., Golden, M.S., Fink, J., Rinzler, A., and Smalley, R.E., Phys. Rev. Lett. 80, 4729 (1998).Google Scholar
18. Rowe, D.M., CRC Handbook of Thermoelectrics (CRC, Boca Raton, FL, 1995), chapter 19.Google Scholar