Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T04:02:52.636Z Has data issue: false hasContentIssue false

Low Energy Focused Ion Beam Processing

Published online by Cambridge University Press:  25 February 2011

Kenji Gamo*
Affiliation:
Faculty of Engineering Science and Research Center for Extreme Materials, Osaka University, Toyonaka, Osaka 560, Japan
Get access

Abstract

Focused ion beam (FIB) techniques have many advantages which stem from being maskless and have attracted much interest for various applications including in situ processing. However, reduction of damage and improvement of throughput are problems awaiting solution. For reduction of damage, low energy FIB is promising and for improvement of throughput, understanding of the basic processes and optimization of process parameters based on this understanding is crucial. This paper discusses characteristics of low energy FIB system, ion beam assisted etching and ion implantation, and effect of damage with putting emphasize on in situ fabrication. Low energy (0.05–25keV) FIB system being developed forms -lOOnm diameter ion beams and is connected with molecular beam epitaxy system. Many results indicate that low damage, maskless ion beam assisted etching is feasible using low energy beams. Recently it was also shown that for ion beam assisted etching of GaAs, pulse irradiation yields very high etching rate of 500/ion. This indicates that the optimization of the relative ratio of ion irradiation and reactant gas supply as important to achieve high etching rate. Low energy FIB is also important for selective doping for high electron mobility heterostructures of GaAs/GaAlAs, because high mobility is significantly degraded by a slight damage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matsui, S., Kojima, Yoshikatsu and Ochiai, Yukinori, Appl Phys. Lett. 53 (1988) 868.Google Scholar
2. Atkinson, G. M., Stratton, F. P., Kubena, R. L. and Wolfe, J. C., J. Vac. Sci. Technol. (to be published November/December issue, 1992)Google Scholar
3. Koh, Young-Bum, Goto, Toshikazu, Yanagisawa, Junichi and Gamo, K., Jpn. J. Appl Phys. (in press).Google Scholar
4. Tamura, M., Shukuri, S., Tachi, S., Ishitani, T. and Tamura, H., Jpn. J. Appl Phys. 22 (1983) L698.CrossRefGoogle Scholar
5. Miyauchi, Eizo and Hashimoto, Hisao, J. Vac. Sci. Technol. A4 (1986) 933.CrossRefGoogle Scholar
6. Lezec, Henri L., Musil, Christian R. and Mclngailis, John, J. Vac. Sci. Technol. B9 (1991) 2709.Google Scholar
7. Kosugi, T., Gamo, K., Aihara, S. Nambaand R., J. Vac. Sci. Technol. B9 (1991) 2660.Google Scholar
8. Kosugi, T., Iwase, H. and Gamo, K., Jpn. J. Appl Phys. (to be published).Google Scholar
9. Gamo, Kenji and Namba, Susumu, J. Vac. Sci. Technol. B8 (1990) 1927.Google Scholar
10. Wagner, A., Levin, J. P., Mauer, J. L., Blauner, P. G., Kirch, S. J. and Longo, P., J. Vac. Sci. Technol. B8 (1990) 1557.Google Scholar
11. Shed, G. M., Lezec, H., Dubner, A. D. and Melngailis, J., Appl Phys. Lett. 49 (1986) 1584.Google Scholar
12. Lee, J. Y. and Kubena, R. L.: Appl Phys. Lett. 48 (1986) 668.Google Scholar
13. Shukuri, S., Wada, Y., Hagiwara, T., Komori, K. and Tamura, M., Extended Abstracts of 18th Conf. Solid State Devices and Materials (Jpn. Soc. Appl Phys., 1986) p. 327.Google Scholar
14. Rensch, D. B., Matthews, D. S., Utlauw, M. W., Courtney, M. D. and Clark, : IEEE Trans. Electron Devices ED- 34 (1987) 2232.CrossRefGoogle Scholar
15. Lattes, A. L., Munroe, S. C., Seaver, M. M., Murguia, J. E., Shepard, M. I. and Melngailis, J., J. Vac. Sci. Technol. B9 (1991)Google Scholar
16. Ishitani, Tohru, Ohnishi, Tsuyoshi and Kawanami, Yoshimi, Jpn. J. Appl Phys. 29 (1990) 2283 CrossRefGoogle Scholar
17. Harriott, H. R., Wagner, A. and Fritz, F.: J. Vac. Sci. Technol. B4 (1986) 181.Google Scholar
18. Nikawa, K., Nasu, K., Murase, M., Kaito, T., Adachi, T. and Inoue, S.: Proc. 1989 International Reliability Physics Symposium (1989) p. 16.Google Scholar
19. Blauner, Patricia G., Proc. 1991 Intern. MicroProcess Conf. JJAP Ser. 5 (Jpn. Soc. Appl Phys., 1991) 309.Google Scholar
20. Harriott, L. R., Tempkin, H., Ham, R. A., Weiner, J. and Panish, M. B.: J. Vac. Sci. Technol. B7 (1989) 1467.Google Scholar
21. Hirayama, Y. and Okamoto, H., J. Vac. Sci. Technol. B6 (1988) 1018.Google Scholar
22. Hiramoto, T., Hirakawa, K. and Ikoma, T., J. Vac. Sci. Technol. B6 (1988) 1014.Google Scholar
23. Nakata, S., Science and Technology of Mcsoscopic Structures (Springer, 1992) (to be published).Google Scholar
24. McLean, J. S., Wieck, A. D., Bieder, M. and Ploog, K., Appl Phys. Lett. 61 (1992) 1324.CrossRefGoogle Scholar
25. Petroff, P. M., Li, Y. J., Xu, Z., Beinstingl, W., Sasa, S. and Ensslin, K., J. Vac. Sci. Technol. B9 (1991) 3074 and papers there in.Google Scholar
26. Beinstingl, W., Li, Y. L., Weman, H., Merz, J. and Petroff, P. M., J. Vac. Sci. Technol. B9 (1991) 3479.CrossRefGoogle Scholar
27. Aoyagi, Yoshinobu, Shinmura, Kohji, Kawasaki, Kiyoshi, Tanaka, Tomoko, Gamo, Kenji, Namba, Susumu and Nakamoto, Ichiro, Appl Phys. Lett. 60 (1992) 968.Google Scholar
28. Vancauwenberghe, O., Herbots, N., Manoharan, H. and Ahrens, M., J. Vac. Sci. Technol. A9 (1991) 1035.Google Scholar
29. Vancauwenberghe, O., Hellman, O. C., Herbots, N. and Tan, W. J., Appl Phys. Lett. 59 (1991) 2031.Google Scholar
30. Kitabatake, Makoto and Greene, J. E., Mat. Res. Soc. Symp. Proc. Vol. 223, (Mat. Res. Soc., 1991) 9.Google Scholar
31. Yamasawa, M., Matsumoto, T., Taniguchi, H., Sakamoto, T., Takagaki, Y., Yuba, Y., Takaoka, S., Gamo, K., Murase, K. and Namba, S., Jpn. J. Appl Phys. 30 (1991) 3261.Google Scholar
32. Sasa, S., Miller, M. S., Li, Y. J., Xu, Z., Ensslin, K. and Petroff, P. M., Appl Phys. Lett. 57 (1990) 2259.CrossRefGoogle Scholar
33. Arimoto, H., Kawano, A., Kitada, H., Endoh, A. and Fujii, T.: J. Vac. Sci. Technol. B9 (1991) 2675.Google Scholar
34. Narum, D. H. and Fabian Pease, R.: J. Vac. Sci. Technol. B6 (1988) 966.Google Scholar
35. Kasahara, H., Sawaragi, H., Aihara, R., Gamo, K. and Namba, S.: J. Vac. Sci. Technol. B6 (1988) 974.CrossRefGoogle Scholar
36. Hirohata, S., Kosugi, T., Sawaragi, H., Aihara, R. and Gamo, K., J. Vac. Sci. Technol. (to be published).Google Scholar
37. Skidmore, J. A., Green, D. L., Young, D. B., Olsen, J. A., Hu, E. L., Coldren, L. A. and Petroff, P. M., J. Vac. Sci. Technol. B9 (1991) 3516.CrossRefGoogle Scholar
38. Yu, J. Z., Hara, M., Hamagaki, M., Yoshinaga, T., Aoyagi, Y. and Namba, S., J. Vac. Sci. Technol. B6 (1988) 1626.Google Scholar
39. Kosugi, T., Mimura, Ryou, Aihara, Ryuso, Gamo, Kenji and Namba, Susumu, Jpn. J. Appl Phys. 29 (1990) 2295.Google Scholar
40. Zicglcr, J. F., Biersack, J. P. and Littmark, U., Tfie Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar