Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-09-01T06:17:15.143Z Has data issue: false hasContentIssue false

Lone Pair Interactions in Zintl Phases and Intermetallic Compounds: Influence on Electronic Properties in Stannides and Plumbides

Published online by Cambridge University Press:  16 February 2011

Thomas F. Fässler*
Affiliation:
Laboratorium für Anorganische Chemie, Universitätstr. 6, ETH Zürich, Switzerland
Get access

Abstract

The phases K6Sn23Bi2, K6Sn25, NaSn5, BaSn3, BaSn5, and K5Pb24 depict the structural transition from Zintl phases with localized chemical bonds to typical intermetallic compounds which may even have superconducting properties. The question of the nature of the chemical bond in these compounds is studied with the help of quantum mechanical calculations. Tight binding band structure calculations and real space representations using the Electron Localization Function (ELF) show that free electron pairs play a crucial role for the description of the chemical bond in polar intermetallic compounds. Interactions between lone pairs have a dominant influence on the electronic structures. The coincident appearance of quasi-molecular localized states in form of lone pairs and disperse delocalized bands at the Fermi level EF is discussed with respect to a ‘chemical view’ of the superconductivity observed for BaSn3, BaSn5, and K5Pb24.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Becke, A. D., Edgecombe, E., J. Chem. Phys. 92, 5397 (1990).Google Scholar
2. Savin, A., Nesper, R., Wengert, S., Fassler, T. F., Angew. Chem. Int. Ed. Engl. 36, 1808 (1997).Google Scholar
3. Simon, A., Angew. Chem. Int. Ed. Engl. 26, 579 (1987).Google Scholar
4. Simon, A., Angew. Chem. Int. Ed. Engl. 36,1788 (1997).Google Scholar
5. van Schilfgarde, M., Paxton, T. A., Jepsen, O., Andersen, O. K., Krier, G., Programm TBLMTO, unpublished, Max-Planck-lnstitut for Festkörperforschung, Stuttgart 1994.Google Scholar
6. Häußermann, U., Wengert, S., Nesper, R., Fässler, T. F., Program MEHMACC , based on the QCPE-Extended-Huckel Program EHMACC, Zürich 1993.Google Scholar
7. Whangbo, M.-H., Evain, M., Hughbanks, T., Kertes, M., Wijeyesekera, S., Wilker, C., Zheng, C., Hoffmann, R., Program EHMACC 1990.Google Scholar
8. Fässler, T. F., Savin, A., Chem. unserer Zeit 31, 110 (1997).Google Scholar
9. Fässler, T. F., Kronseder, C., Z. Anorg. Allg. Chem. 624, 561 (1998).Google Scholar
10. Fässler, T. F., Kronseder, C., Angew. Chem. Int. Ed. Engl. 37, 157 (19981).Google Scholar
11. Fässler, T. F., Kronseder, C., Angew. Chem. Int. Ed. Engl. 36, 2683 (1997).Google Scholar
12. Fässler, T. F., Kronseder, C., Z. Anorg. Allg. Chem. in press (1999).Google Scholar
13. For the binary phase K6+xSn25, a phase width of-2 ≤ × ≤ 2 is found. A second single-crystal structure analyses with a K content close to 8 (7.4 K atoms) but very short K-K contacts (~ 2.9 Å) was previously published (Zhao, J., Corbett, J. D., Inorg. Chem. 33, 5721 (1994). K6Sn25 does not show further electron density to justify further K atoms.Google Scholar
14. Fassler, T. F., Z. Anorg. Allg. Chem. 624, 569 (1998).Google Scholar
15. Newns, D. M., Krishnamurthy, H. R., Pattnaik, P. C., Tsuei, C. C., Chi, C. C., Kane, C. L., Physica B, 186, 801 (1993).Google Scholar