Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-22T01:46:38.812Z Has data issue: false hasContentIssue false

Location Of Residual Donors In GaN Epitaxial Layers

Published online by Cambridge University Press:  10 February 2011

E. R. Glaser
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375-5347, glaser@bloch.nrl.navy.mil
T. A. Kennedy
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375-5347, glaser@bloch.nrl.navy.mil
A. E. Wickenden
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375-5347, glaser@bloch.nrl.navy.mil
D. D. Koleske
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375-5347, glaser@bloch.nrl.navy.mil
W. G. Perry
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
Get access

Abstract

Optically-detected electron-nuclear double resonance (ODENDOR) studies at 24 GHz on high-resistivity GaN films grown on Al2O3 have been combined with x-ray diffraction measurements to obtain information on the location of the residual shallow donors. Strong ODENDOR assigned to 69,71Ga lattice nuclei was detected on the g=1.951 effective-mass donor resonance found on the 2.2 eV emission bands. The x-ray studies reveal that the layers are under biaxial compression with high values of strain (∼ 2–3 × 10−3). The quadrupole splittings for 69Ga are smaller than those reported for strain-free samples by 15–25 %. The dominant sources of the local electric field gradient (EFG) responsible for the splittings are attributed to the wurtzite crystal structure and the strain fields that arise from the lattice constant mismatch and the difference in thermal expansion coefficients. An EFG/strain relationship of 3 × 1022 Vm−2 per unit strain at the 69,71Ga nuclei is deduced. The ODENDOR can be described with asymmetry parameter η=0. This provides evidence that the donors are in the crystallites rather than near grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, e.g., Ponce, F.A., Krusor, B.S., Major, J.S., Jr., Plano, W.E., and Welch, D.F., Appl. Phys. Lett. 67, 410 (1995).Google Scholar
2. Glaser, E.R., Kennedy, T.A., Doverspike, D., Rowland, L.B., Gaskill, D.K., Freitas, J.A., Jr., Khan, M. Asif, Olson, D.T., Kuznia, J.N., and Wickenden, D.K., Phys. Rev. B51, 13326 (1995).Google Scholar
3. Hofmann, D.M., Kovalev, D., Steude, G., Volm, D., Meyer, B.K., Xavier, C., Monteiro, T., Peroria, E., Mokov, E.N., Amano, H., and Akasaki, I., Mat. Res. Soc. Proc. Vol.395, 619 (1996).Google Scholar
4. Mason, P.W., Watkins, G.D., and Dornen, A., Mat. Res. Soc. Proc. Vol.449, 793 (1997).Google Scholar
5. Koschnick, F.K., Michael, K., Spaeth, J.-M., Beaumont, B., and Gibart, P., Phys. Rev. B54, R11042 (1996).Google Scholar
6. Wickenden, A.E., Gaskill, D.K., Koleske, D.D., Simons, D.S., and Chi, P.H., Mat. Res. Soc. Proc. Vol.395, 679 (1996).Google Scholar
7. Glaser, E.R., Kennedy, T.A., Carlos, W.E., Freitas, J.A., Jr., Wickenden, A.E., and Koleske, D.D., submitted to Phys. Rev. B.Google Scholar
8. Bennebroek, M.T., Poluektov, O.G., Zakrzewski, A.J., Baranov, P.G., and Schmidt, J., Phys. Rev. Lett. 74, 442 (1995).Google Scholar
9. Perry, W.G., Zheleva, T., Bremser, M.D., Davis, R.F., Shan, W., and Song, J.J., J. Electron. Mater. 26, 224 (1997).Google Scholar
10. Glaser, E.R., Kennedy, T.A., Wickenden, A.E., Koleske, D.D., and Freitas, J.A., Jr., Mat. Res. Soc. Proc. Vol.449, 543 (1997).Google Scholar
11. Cohen, M.H. and Reif, F., Solid State Phys. 5, 321 (1957).Google Scholar
12. Numerical Data and Functional Relationships in Science and Technology, Bornstein, Landolt-, New Series, Group III, Vol.31, pt. a (Springer-Berlin, 1993).Google Scholar
13. Siegle, H., Hoffmann, A., Eckey, L., Thomsen, C., Christen, J., Bertram, F., Schmidt, D., Rudloff, D., and Hiramatsu, K., Appl. Phys. Lett. 71, 2490 (1997).Google Scholar
14. Denninger, G. and Reiser, D., Phys. Rev. B 55, 5073 (1997).Google Scholar
15. Han, O.H., Timken, H.K.C., and Oldfield, E., J. Chem. Phys. 89, 6046 (1988).Google Scholar
16. Detchprohm, T., Hiramatsu, K., Itoh, K., and Akasaki, I., Jpn. J. Appl.Phys. 31, Pt. 2, L1454 (1992).Google Scholar
17. Guerrier, D.J. and Harley, R.T., Appl. Phys. Lett. 70, 1734 (1997).Google Scholar
18. See, e.g., Barrett, S.E., Tycko, R., Pfeiffer, L.N., and West, K.W., Phys. Rev. Lett. 72, 1368 (1994).10.1103/PhysRevLett.72.1368Google Scholar