Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T09:09:16.478Z Has data issue: false hasContentIssue false

Local Potential at Atomically Abrupt Oxide Interfaces by Scanning Probe Microscopy

Published online by Cambridge University Press:  10 February 2011

Sergei V. Kalinin
Affiliation:
Dept. Mat. Sci. & Eng., The University of Pennsylvania, 3231 Walnut St. Philadelphia, PA 19104
Dawn A. Bonnell
Affiliation:
Dept. Mat. Sci. & Eng., The University of Pennsylvania, 3231 Walnut St. Philadelphia, PA 19104
Get access

Abstract

Electrostatic force microscopy and scanning surface potential microscopy are combined to quantify nanometer scale field variations in the vicinity of grain boundaries in donor doped σ15 SrTiO3 bicrystals. An analytical electrostatic model is used to develop a procedure for determining interface potential from measurements made above the surface. Grain boundary potentials and depletion widths determined by both techniques are in excellent agreement despite the fundamental difference in imaging mechanisms. The comparison confirms the analytical approach and illustrates use of scanning probes to image interface properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hench, L.L., West, J.K., Principles of Electronic Ceramics, Wiley, 1990.Google Scholar
2 Lines, M.E., Glass, A.M., Principles and Applications of Ferroelectric and Related Materials, Oxford University Press (1977).Google Scholar
3 Haertling, G.H., J. Am. Ceram. Soc. 82, 797 (1999).10.1111/j.1151-2916.1999.tb01840.xGoogle Scholar
4 Bednorz, J.G., Muller, K.A., Z. Phys. B 64, 189 (1986).10.1007/BF01303701Google Scholar
5 Rao, C.N.R. et al, J. Phys. Chem. Solids 59, 487 (1998).Google Scholar
6 Henning, A.K., Hochwitz, T., Mater Sci Eng B-Solid State, 42, 88 (1996).Google Scholar
7 Jean, M. Saint, Hudlet, S., Guthmann, C., Berger, J., J. Appl. Phys. 86, 5245 (1999).Google Scholar
8 Huey, B.D., Ph.D. Thesis, University of Pennsylvania, Philadelphia (1999).Google Scholar
9 Jacobs, H.O., Leuchtmann, P., Homan, O.J., Stemmer, A., J. Appl. Phys. 84, 1168 (1998).Google Scholar
10 Jackson, J.D., classical Electrodynamics, John Wiley (1998)Google Scholar
11 Hao, H.W., Baro, A.M., Saenz, J.J., Journ. Vac. Sci. Tech. B 9, 1323 (1991)Google Scholar
12 Belaidi, S., Girard, P., Leveque, G., J. Appl. Phys. 81, 1023 (1997).Google Scholar
13 Cohen, S., Efimov, A., Preliminary proceedings of STM'99, ed. Kuk, Y., Lyo, I.W., Jeon, D., Park, S.- I., 554 (July, 1999).Google Scholar
14 Kalinin, S. V., Bonnell, D.A., Phys. Rev. B, submitted Google Scholar
15 Command reference manual, Digital Instruments (1997).Google Scholar
16 Sarid, D., Scanning Force Microscopy, Oxford University Press (1991).Google Scholar