Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-20T19:23:53.703Z Has data issue: false hasContentIssue false

Local Ordering in GaN-Rich Ternary GaNP Alloys

Published online by Cambridge University Press:  10 February 2011

R.K. Soni
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931, USA
P.S. Dobal
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931, USA
R.S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931, USA
H. Asahi
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, Osaka 567, Japan
H. Tampo
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, Osaka 567, Japan
S. Gonda
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, Osaka 567, Japan
Get access

Abstract

Using micro-Raman scattering we have studied atomic distribution and the ordering effects in GaN-rich GaNP layers on (0001) sapphire substrates grown by electron cyclotron resonance molecular beam epitaxy (ECR-MBE). Raman spectrum from layers grown at higher temperatures (≥700°C) shows coexistence of GaP-rich region with cubic symmetry and GaN-rich region with hexagonal symmetry. Sharp TO and LO phonon lines, indicative of {111} ordering in the GaP region are observed. Increasing phosphorous (P >1.5%) in GaNP alloy leads to phase separation that is reflected in the suppression of GaN-like Raman modes. The phase-separated region shows an additional Raman line at 384 cm−1 between the TO and LO phonon of GaP due to strongly confined LO phonon in ordered {111} (GaP)n(GaN)m nanometer size clusters. Decreasing growth temperature increases the phosphorous concentration in the GaNP layer and disorder activated acoustic modes appear in the Raman spectrum as a result of symmetry break down. When phosphorous concentration reaches 8.2 % in the layer grown at 570°C, Raman spectrum shows broad amorphous like bands indicative of short-range ordering

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Korakakis, D., Ludwig, K.F., and Mostakas, T.D., Appl. Phys. Lett. 71, 71 (1997).Google Scholar
2 Rueterana, P. and Nouet, G., Appl. Phys. Lett. 72, 1742(1998).Google Scholar
3 Behbehani, M.K., Piner, E.L., Liu, SX., El-Mastry, N. E., and Bedair, S. M., Appl. Phys. Lett. 75, 2202 (1999).Google Scholar
4 Bellaiche, L., Wei, Su-Huai, and Zunger, A., Phys. Rev. B 56, 10233 (1997).Google Scholar
5 Iwata, K., Asahi, H., Asami, K., and Gonda, S., Jpn. J. Appl. Phys. 35, L1634 (1996).Google Scholar
6 Iwata, K., Asahi, H., Asami, K., and Gonda, S., J. Cryst. Growth 175/176, 1505 (1997).Google Scholar
7 Kuroiwa, R., Asahi, H., Iwata, K., Kim, S.J., Noh, J.H., Asami, K., and Gonda, S., Jpn. J. Appl. Phys. 36, 3810 (1997).Google Scholar
8 Kuroiwa, R., Asahi, H., Asami, K., Kim, S.J., Iwata, K., and Gonda, S., Appl. Phys. Lett. 73, 2630 (1998).Google Scholar
9 Kuroiwa, R., Asahi, H., Iwata, K., Tampo, H., Asami, K., and Gonda, S., Appl. Phys. Stat. Solidi (b) 216, 461 (1999).Google Scholar
10 Soni, R.K., Asahi, H., Emura, S. Watanabe, T., Asami, K. and Gonda, S., Appl. Surf. Sci 60/61,553 (1992).Google Scholar
11 Davydov, V. Yu., Kitaev, Yu. E., Goncharuk, IN., Smirov, A.N., Graul, J., Semchinova, O., Uffman, D., Smirnov, M.B., Mirgorodsky, A.P., and Evarestov, R.A., Phys. Rev. B 58, 12899 (1998).Google Scholar