Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T16:31:24.927Z Has data issue: false hasContentIssue false

Local Channel Temperature Measurements on Pseudomorphic High Electron Mobility Transistors by Photoluminescence Spectroscopy

Published online by Cambridge University Press:  10 February 2011

J.P. Landesman
Affiliation:
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91404 Orsay Cedex, France, landesman@thomson-lcr.fr
E. Martin
Affiliation:
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91404 Orsay Cedex, France, landesman@thomson-lcr.fr
B. Depret
Affiliation:
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91404 Orsay Cedex, France, landesman@thomson-lcr.fr
A. Fily
Affiliation:
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91404 Orsay Cedex, France, landesman@thomson-lcr.fr
P. Braun
Affiliation:
United Monolithic Semiconductors GmbH, Wilhelm-Runge-Strasse 11, 89081 Ulm, Germany
Get access

Abstract

The technique of spatially resolved photoluminescence (PL) spectroscopy was used to determine the local channel temperatures on GaAs/GaInAs/GaAlAs pseudomorphic high electron mobility transistors. By focusing a laser beam onto the different regions of the DC-biased transistor, it is shown that the channel temperature can be determined from the energy shift of one of the peaks in the PL spectra, with a spatial resolution of about 1 µm and a temperature resolution in the order of 1 °C. In particular, an asymmetry in the temperature distribution between the drain and source sides is observed. Using this approach, detailed temperature maps of the devices were obtained, as a function of the gate-source voltage VGS. These experimental temperature values are also compared with predictions derived from an analytical model of the thermal resistance in these devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wemple, S.H. and Huang, H.C. in GaAs FET Principles and Technology, edited by DiLorenzo, J.V. and Khandelwal, D.D. (Artech House, Dedham, MA, 1982), p. 309347.Google Scholar
2. Magistrali, F., Tedesco, C., Zanoni, E. and Canali, C. in Reliability of Gallium Arsenide MMICs, edited by Christou, A. (Wiley, Chichester, UK, 1992), p. 101189.Google Scholar
3. Fukui, H. in Int. Electron Devices Meeting Technical Digest, (1980), p. 118121.Google Scholar
4. Canali, C., Chiussi, F., Donzelli, G., Magistrali, F. and Zanoni, E., Micro-electron. Reliab. 29, p. 117124 (1989).10.1016/0026-2714(89)90556-8Google Scholar
5. Stephens, C.E. and Sinnadurai, F.N., J. Phys. E 7, p. 641643 (1974).Google Scholar
6. Lai, J., Chandrachood, M., Majumdar, A. and Carrejo, J.P., IEEE Electron. Dev. Lett. 16, p. 312315(1995).10.1109/55.388718Google Scholar
7. Perkowitz, S., Optical Characterization of Semiconductors, Academic Press, London, 1993.10.1016/B978-0-12-550770-7.50007-2Google Scholar
8. Semiconductors-Basic Data, edited by Madelung, O. (Springer, Berlin, 1996).10.1007/978-3-642-97675-9Google Scholar
9. Hall, D.C., Goldberg, L. and Mehuys, D., Appl. Phys. Lett. 61, p. 384386 (1992).10.1063/1.107890Google Scholar
10. Microwave Products Catalogue, Sec. 7, UMS (1997).Google Scholar
11. Landesman, J.P., Depret, B., Fily, A., Nagle, J. and Braun, P., Appl. Phys. Lett. 72, p. 13381340 (1998).10.1063/1.120987Google Scholar
12. Gilprrez, J.M., Sdnchez-Rojas, J.L., Mufioz, E., Calleja, E., David, J.P.R., Reddy, M., Hill, G. and Sdnchez-Dehesa, J., J. Appl. Phys. 76, p. 59315944 (1994).10.1063/1.358416Google Scholar
13. Ghione, G. and Naldi, C.U. in Int. Electron Devices Meeting Technical Digest, (1989), p. 147150.Google Scholar
14. Cooke, H.F., Microwaves RF 25, p. 8587 (1986).Google Scholar