Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T09:25:12.833Z Has data issue: false hasContentIssue false

Lithium Doping in La2CuO4 and La2NiO4

Published online by Cambridge University Press:  15 February 2011

J. L. Sarrao
Affiliation:
National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32306
M. E. Torelli
Affiliation:
National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32306
Z. Fisk
Affiliation:
National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32306
Get access

Abstract

We have studied the effect of hole doping via Li substitution in La2CuO4 and La2NiO4. The response to hole doping of the Ni (S=1) sublattice is distinct from that of the Cu (S=1/2) sublattice. These effects are seen most clearly for La2Cu0.5Li0.5O4 and La2Ni0.5Li0.5O4 in which the Li ions form an ordered superlattice. It appears that Ni is in a low-spin d7 configuration whereas Cu is in a d9-ligand “Zhang-Rice” configuration. Despite this difference, the response of both La2CuO4 and La2NiO4 to hole doping is surprisingly independent of whether Sr (which substitutes out of plane for La) or Li (which substitutes in the plane for Cu/Ni) is used as the dopant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sarrao, J.L., Young, D.P., Fisk, Z., Moshopoulou, E.G., Thompson, J.D., Chakoumakos, B.C., and Nagler, S.E., Phys. Rev. B 54 (1996) 12014.Google Scholar
2. Kastner, M.A., Birgeneau, R.J., Chen, C.Y., Chiang, Y.M., Gabbe, D.R., Jenssen, H.P., Junk, T., Peters, C.J., Picone, P.J., Thio, T., Thurston, T.R., and Tuller, H.L., Phys. Rev. B 37 (1988) 1111.Google Scholar
3. Rykov, A.I., Yasouka, H., and Ueda, Y., Physica C 247 (1995) 327.Google Scholar
4. Attfield, J.P. and Ferey, G., J. Solid State Chem. 80 (1989) 112.Google Scholar
5. Yoshinari, Y., Hammel, P.C., Martindale, J.A., Moshopoulou, E., Thompson, J.D., Sarrao, J.L., and Fisk, Z., Phys. Rev. Lett. 72 (1996) 2069.Google Scholar
6. Zhang, F.C. and Rice, T.M., Phys. Rev. B 37 (1988) 3759.Google Scholar
7. Cava, R.J., Batlogg, B., Palstra, T.T., Krajewski, J.J., Peck, W.F. Jr, Ramirez, A.P., and Rupp, L.W. Jr, Phys. Rev. B 43 (1991) 1229.Google Scholar
8. Cheong, S.-W., Chen, C.H., Hwang, H.Y., Batlogg, B., Rupp, L.W. Jr, Cooper, A.S., Physica B 199&200 (1994) 659.Google Scholar
9. Demazeau, G., Marty, J.L., Pouchard, M., Rojo, T., Dance, J.M., and Hagenmuller, P., Mat. Res. Bull. 16(1981)47 Google Scholar
10. Moshopoulou, E., Kwei, G.H., Thompson, J.D., Sarrao, J.L., Fisk, Z., Chakoumakos, B.C., and Nagler, S.E., unpublished.Google Scholar
11. Radaelli, P.G., Hinks, D.G., Mitchell, A.W., Hunter, B.A., Wagner, J.L., Dabrowski, B., Vandervoort, K.G., Viswanathan, H.K., and Jorgensen, J.D., Phys. Rev. B 49 (1994) 4163.Google Scholar
12. Cheong, S.-W., Cooper, A.S., Rupp, L.W. Jr, Batlogg, B., Thompson, J.D., and Fisk, Z., Phys. Rev. B 44 (1991) 9739.Google Scholar
13. Le, L.P., Heffner, R.H., MacLaughlin, D.E., Kojima, K., Luke, G.M., Nachumi, B., Uemura, Y.J., Sarrao, J.L., and Fisk, Z., Phys. Rev. B 54 (1996) 9538.Google Scholar
14. Johnston, D.C., Phys. Rev. Lett. 62 (1989) 957.Google Scholar
15. Demazeau, G., Buffat, B., Pouchard, M., and Hagenmuller, P., J. Solid State Chem. 54 (1984) 389.Google Scholar