Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T03:03:13.158Z Has data issue: false hasContentIssue false

Liquid-Solid Interface Morphologies and Defect Structures in Zone-Melting-Recrystallized Silicon-On-Insulator Films

Published online by Cambridge University Press:  28 February 2011

J. S. Im
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
C. K. Chen
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173
C. V. Thompson
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
M. W. Geis
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173
H. Tomita
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

In-situ optical microscopy has been used to observe liquid-solid interface morphologies during zone-melting recrystallization of silicon-on-insulator films. These morphologies have been correlated with the defect morphologies of the recrystallized films. Stable cellular solidification fronts, which are obtained at low zone velocities if the radiation intensity gradient in the interfacial region is small, yield subboundary free films. We suggest that under these experimental conditions the interface morphology is primarily the result of radiative heating rather than constitutional supercooling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Geis, M. W., Chen, C. K., Smith, H. I., Nitishin, P. M., Tsaur, B-Y., and Mountain, R W., in Materials Research Symposium Proceedings (Pittsburgh, PA, 1986), Vol. 53, p. 39.Google Scholar
2 Chen, C. K., Geis, M. W., Finn, M. C., and Tsaur, B. Y., Appl. Phys. Lett. 48, 1300 (1986).Google Scholar
3 Pfeiffer, L., West, K. W., and Joy, D. C., in Materials Research Symposium Proceedings (Pittsburgh, PA, 1986), Vol. 53, p. 29.Google Scholar
4 Geis, M. W., Smith, H. I., and Chen, C. K., J. Appl. Phys. 60, 1152 (1986).Google Scholar
5 Pfeiffer, L., Gelman, A. E., Jackson, K. A., West, K. W., and Batstone, J. L., Appl. Phys. Lett. 51, 1256 (1987).Google Scholar
6 Im, J. S., Tomita, H., and Thompson, C. V., Appl. Phys. Lett. 51, 685 (1987).CrossRefGoogle Scholar
7 Haond, M., Vu, D. P., Bensahel, D., and Dupuy, M., J. Appl. Phys. 54, 3892 (1983).Google Scholar
8 Rutter, J. W. and Chalmers, B., Can. J. Phys. 31, 15 (1953).CrossRefGoogle Scholar
9 Jesse, R. E. and Giller, H. F. J. I., J. Cryst. Growth 7, 348 (1970).CrossRefGoogle Scholar
10 Billia, B., Jamgotchian, H., and Capella, L., J. Cryst. Growth 66, 596 (1984).CrossRefGoogle Scholar
11 Im, J. S., Thompson, C. V., and Tomita, H., in Materials Research Symposium Proceedings (Pittsburgh, PA, 1987), Vol. 74, p. 555.Google Scholar
12 Grigoropoulos, C. P., Buckholz, R. H., and Tomoto, G. A., J. Appl. Phys. 52, 454 (1986).Google Scholar
13 Bardsley, W., Mullin, J. B., and Hurle, D. T., The Solidification of Metals (I.S.I. Publication, London, 1967), p. 93.Google Scholar
14 Chalmers, B., J. Cryst. Growth 20, 3 (1984).Google Scholar
15 Gibson, J. M., Pfeiffer, L., West, K. W., and Joy, D. C, in Materials Research Symposium Proceedings (Pittsburgh, PA, 1986), Vol. 53, p. 289Google Scholar