Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T06:20:25.628Z Has data issue: false hasContentIssue false

Linear and Nonlinear Transmission of Surface Plasmon Polaritons in an Optical Nanowire

Published online by Cambridge University Press:  01 February 2011

N. C. Panoiu
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, 500. W. 120th Street, New York, NY 10027
R. M. Osgood Jr
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, 500. W. 120th Street, New York, NY 10027
Get access

Abstract

Polymer-metal composites offer the possibility of strongly enhanced nonlinear optical properties, which can be used for ultrasmall photonic devices. In this paper, we investigate numerically, by means of the finite-difference time-domain (FDTD) method, the propagation characteristics of surface plasmon polariton (SPP) modes excited in an optical nanowire consisting of a chain of either metallic cylinders or metallic spheres embedded in dielectric shells made of polymers (or other material) with optical Kerr nonlinearity. Our FDTD calculations incorporate both the nonlinear optical response of the dielectrics as well as the frequency dispersion of the metals, which is considered to obey a Drude-like model. It is demonstrated that, in the linear limit, the nanowire supports two SPP modes, a transverse and a longitudinal one, separated by Δλ = 20 nm. Furthermore, the dependence of the transmission of these SPP modes, on both the pulse peak power and Kerr coefficient of the dielectric shell, is investigated. Nonlinear optical phenomena, such as power-dependent mode frequency, switching, or optical limiting, are observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moroz, A., Phys. Rev. Lett. 83, 5274 (1999).Google Scholar
2. Sievenpiper, D. F., Sickmiller, M. E., and Yablonovitch, E., Phys. Rev. Lett. 76, 2480 (1996).Google Scholar
3. Porto, J.A., Garcia-Vidal, F.J., and Pendry, J.B., Phys. Rev. Lett. 83, 2845 (1999).Google Scholar
4. Martin-Moreno, L., Garcia-Vidal, F.J., Lezec, H. J., Pellerin, K. M., Thio, T., Pendry, J. B., and Ebbesen, T. W., Phys. Rev. Lett. 86, 1114 (2001).Google Scholar
5. Sievenpiper, D.F., Zhang, L., Broas, R.F.J., Alexopolous, N.G., and Yablonovitch, E., IEEE Trans. Microwave Theory Tech. 47, 2059 (1999).Google Scholar
6. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., and Schultz, S., Phys. Rev. Lett. 84, 4184 (2000).Google Scholar
7. Panoiu, N. C. and Osgood, R. M., Phys. Rev. E 68, 016611 (2003).Google Scholar
8. Panoiu, N. C. and Osgood, R. M., Opt. Commun. 223, 331 (2003).Google Scholar
9. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A., and Kobayashi, T., Opt. Lett. 22, 475 (1997).Google Scholar
10. Yatsui, T., Kourogi, M., and Ohtsu, M., Appl. Phys. Lett. 79, 4583 (2001).Google Scholar
11. Quinten, M., Leitner, A., Krenn, J. R., and Aussenegg, F. R., Opt. Lett. 23, 1331 (1998).Google Scholar
12. Maier, S. A., Kik, P. G., and Atwater, H. A., Appl. Phys. Lett. 81, 1714 (2002).Google Scholar
13. Chen, C.J. and Osgood, R.M., Phys. Rev. Lett. 50, 1705 (1983).Google Scholar
14. Liz-Marzan, L. M., Giersig, M., and Mulvaney, P., Langmuir 12, 4329 (1996).Google Scholar
15. Zhou, H. S., Honma, I., Komiyama, H., and Haus, J. W., Phys. Rev. B 50, 12052 (1994);Google Scholar
Averitt, R. D., Sarkar, D., and Halas, N. J., Phys. Rev. Lett. 78, 4217 (1997).Google Scholar
16. Oldenburg, S. J., Averitt, R. D., Westcott, S. L., and Halas, N. J., Chem. Phys. Lett. 288, 243 (1998).Google Scholar
17. Nie, S. and Emory, S. R., Science 275, 1102 (1997).Google Scholar
18. Antoine, R., Brevet, P. F., Girault, H. H., Bethell, D., and Schifirin, D. J., J. Chem. Soc. Chem. Commun., 1901 (1997).Google Scholar
19. Ricard, D., Roussignol, P., and Flytzanis, C., Opt. Lett. 10, 511 (1985).Google Scholar
20. Panoiu, N. C. and Osgood, R. M., Nano Lett. 4 (12), (2004) (in press).Google Scholar