Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T01:21:18.529Z Has data issue: false hasContentIssue false

Light Induced Defect Creation Kinetics in Thin Film Protocrystalline Silicon Materials and Their Solar Cells

Published online by Cambridge University Press:  01 February 2011

C. R. Wronski
Affiliation:
Center For Thin Film Devices, The Pennsylvania State University, University Park, PA
J. M. Pearce
Affiliation:
Center For Thin Film Devices, The Pennsylvania State University, University Park, PA
R. J. Koval
Affiliation:
Center For Thin Film Devices, The Pennsylvania State University, University Park, PA
X. Niu
Affiliation:
Center For Thin Film Devices, The Pennsylvania State University, University Park, PA
A. S. Ferlauto
Affiliation:
Center For Thin Film Devices, The Pennsylvania State University, University Park, PA
J. Koh
Affiliation:
Center For Thin Film Devices, The Pennsylvania State University, University Park, PA
R. W. Collins
Affiliation:
Center For Thin Film Devices, The Pennsylvania State University, University Park, PA
Get access

Abstract

Using real time spectroscopic ellipsometry to characterize the microstructure and evolutionary growth of Si:H materials deposited with and without hydrogen dilution, phase diagrams were developed which clearly defined and established growth in the protocrystalline regime. Guided by these phase diagrams thin films and intrinsic layers in p-i-n cell structures were grown which consist solely of the protocrystalline phase so that the bulk uniform properties of the material could be characterized with confidence. Studies were carried out on the light induced changes in these films and cell structures that include the annealing out of defects as well as their creation under 1 sun illumination at temperatures from 25°C to 100°C that include the attainment of a degraded steady states (DSS). Defect states were characterized in films with electron mobility lifetimes (μτ), and subgap absorption at 1.2eV (α(1.2)); and in the i material of the p-i-n cells by the bulk limited fill factor (FF). The contributions of the different gap states to SWE are identified and characterized. The absence of direct correlations between α(1.2) with μτ and FF present in undiluted and diluted materials also found in protocrystalline Si:H. Similarities, on the other hand, are found between the μτ products and the FFs including the striking changes in the kinetics that occur at ∼40°C. Direct correlations between the changes in μτ and FF at different temperatures are presented. The reason for this correlation and lack of it for α(1.2) are briefly discussed with direct correlation of the α(1.2) to cell characteristics being presented, be it not with the FF.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, L. and Chen, L., Mater. Res. Soc. Symp. Proc. 336, 669 (1994).Google Scholar
2. Yang, J., Xu, X., and Guha, S., Mater. Res. Soc. Symp. Proc. 336, 687 (1994).Google Scholar
3. Bennett, M., Rajan, K., and Kritikson, K., Conf. Record of 23rd IEEE PVSC, (IEEE, New York, 1994), p. 845.Google Scholar
4. Lee, Y., Jiao, L., Liu, H., Lu, Z., Collins, R.W., and Wronski, C.R., Conf. Record of the 25th IEEE PVSC, (IEEE, New York, 1996), p.1165.Google Scholar
5. Collins, R.W., Koh, J., Lu, Y., Kim, S., Burnham, J.S., and Wronski, C.R., Conf. Record of the 25th IEEE PVSC, Washington DC, USA, (IEEE, 1996), pp. 10351040.Google Scholar
6. Collins, R. W., Koh, J., Ferlauto, A., Rovira, P., Lee, Y., Koval, R., and Wronski, C. R., Thin Solid Films 364, 129137 (2000).Google Scholar
7. Koh, Joohyun, Fujiwara, H., Lu, Yiwei, Wronski, C.R., and Collins, R.W., Thin Solid Films 313-314, 469473 (1998).Google Scholar
8. Koh, Joohyun, Lee, Yeeheng, Fujiwara, H., Wronski, C.R., and Collins, R.W., App. Phys.Lett. 73, 15261528 (1998).Google Scholar
9. Fujiwara, H., Koh, Joohyun, Wronski, C.R., Collins, R.W., and Burnham, J.S., App. Phys. Lett. 72, 29932995 (1998).Google Scholar
10. Koval, R. J., Pearce, J. M., Ferlauto, A.S., Rovira, P.I., Collins, R.W., and Wronski, C.R., IEEE Photovoltaic Specialists Conf. Proc., (IEEE, 2000) pp. 750753.Google Scholar
11. Koval, R.J., Pearce, J.M., Ferlauto, A.S., Collins, R.W., and Wronski, C.R., Mat. Res. Soc. Proc., 664, A16.4, (2001).Google Scholar
12. Koval, R. J., Koh, J., Lu, Z., Jiao, L., Collins, R. W., and Wronski, C.R, Appl. Phys. Lett. 75, 1553 (1999).Google Scholar
13. Jiao, L., Semoushikiana, S., Lee, Y., and Wronski, C.R., Mater. Res. Soc. Symp. Proc. 467, 97 (1997).Google Scholar
14. Koval, R.J., Koh, Joohyun, Lu, Zhou, Lee, Yeeheng, Jiao, Lihong, Wronski, C.R.. and Collins, R W, Mater. Res. Soc. Symp. Proc. 557, 263268 (1999).Google Scholar
15. Lee, Y., Jiao, L., Liu, H., Lu, Z., Collins, R.W., and Wronski, C. R., Conf. Record of 25th IEEE PVSEC (IEEE, 1996), p. 1165.Google Scholar
16. Koch, Christian, Ito, Manabu, Svrcek, Vlado, Schubert, Markus B., and Werner, Jürgen H., Mat. Res. Soc. Proc., 609, A15.6 (2000).Google Scholar
17. Gemmer, Christian and Schubert, Markus B., Mat. Res. Soc. Proc., 609, A23.3 (2000).Google Scholar
18. Lu, Y., Kim, S., Gunes, M., Lee, Y., Wronski, C.R., and Collins, R.W., Mat.Res.Soc.Symp. Proc. 336, 595 (1994).Google Scholar
19. Tsu, D. V., Chao, B. S., Ovshinsky, S. R., Guha, S., and Yang, J., Appl. Phys. Lett., 71, 13171319 (1997).Google Scholar
20. Guha, S., Yang, J., Williamson, D. L., Lubianiker, Y., Cohen, J. D., and Mahan, A. H., Appl. Phys. Lett., 74, 18601862 (1999).Google Scholar
21. Koval, R.J., Koh, Joohyun, Lu, Zhou, Jiao, Lihong, Wronski, C.R., and Collins, R.W., Applied Physics Letters 75, 1553 (1999).Google Scholar
22. Lee, Y., Ferlauto, A.S., and Wronski, C.R., Conf. Record of 27th IEEE PVSC, (IEEE, New York, 1997), p.683.Google Scholar
23. Pearce, J. M., Koval, R. J., Ferlauto, A. S., Collins, R. W., Wronski, C.R., Yang, J., and Guha, S., Appl. Phys. Lett. 77, 3093 (2000).Google Scholar
24. Yang, L., Chen, L., and Catalano, A., Appl. Phys. Lett. 59, 840 (1991).Google Scholar
25. Xu, X., Yang, J., and Guha, S., Mat. Res. Soc. Proc., 297 649 (1993).Google Scholar
26. Yang, L. and Chen, L., Appl. Phys. Lett. 63, 400 (1993).Google Scholar
27. Koval, R., Niu, X., Pearce, J., Jiao, L., Ganguly, G., Yang, J., Guha, S., Collins, R. W., Wronski, C. R., Mat. Res. Soc. Proc., 609, A15.5 (2000).Google Scholar
28. Pearce, J., Niu, X., Koval, R., Ganguly, G., Carlson, D., Collins, R.W., Wronski, C.R., Mat. Res. Soc. Proc., 664, A12.3 (2001).Google Scholar
29. Gunes, M. and Wronski, C. R., J. Appl. Phys., 81, 3526 (1997).Google Scholar
30. Xu, X., Yang, J., and Guha, S., Appl. Phys. Lett. 62, 1399 (1993).Google Scholar
31. von Roedern, B., Appl. Phys. Lett., 62, 1368 (1993).Google Scholar
32. Rose, A., Concepts in Photoconductivity and Applied Problems, Wiley, NY (1983).Google Scholar
33. Jamili-Beh, T., Chen, I., Liu, H., Lee, Y., and Wronski, C.R., Mat. Res. Soc. Proc., 377, 627 (1995).Google Scholar