Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-23T09:29:51.909Z Has data issue: false hasContentIssue false

Li-Defect Reactions During Low Dose Ion Implantation of 8LI into ZNSE Single Crystals

Published online by Cambridge University Press:  15 February 2011

M. Restle
Affiliation:
Universität Konstanz, Fakultät für Physik, Postfach M621, D-78457 Konstanz, Germany
M. Dalmer
Affiliation:
Universität Konstanz, Fakultät für Physik, Postfach M621, D-78457 Konstanz, Germany
U. Wahl
Affiliation:
Katholike Universiteit Leuven, IKS, Celestijnenlaan 200D, B-3001 Leuven, Belgium
H. Hofsäss
Affiliation:
Universität Göttingen, Zweites Physikalisches Institut, Bunsenstrasse 7-9, D-37073 Göttingen, Germany ISOLDE Collaboration, CERN, CH-1211 Geneva 23, Switzerland
Get access

Abstract

We present lattice site location and diffusion studies of ion implanted 8Li in ZnSe single crystals at sample temperatures between 180 K and 550 K using the emission channeling technique. Below 200 K, Li is immobile in ZnSe and occupies tetrahedral interstitial sites. Above 250 K, interstitial Li becomes mobile and for an accumulated dose above 1×1012 cm-2 the majority of the implanted Li atoms occupy substitutional sites, presumably Zn sites. However, for room temperature implantation at doses below 1×1012 cm-2, the majority of implanted Li still occupies interstitial sites. This behavior is explained by recombination processes between Zn interstitials and vacancies, thus reducing the vacancy concentration and maintaining a high fraction of interstitial Li. Substitutional Li is stable up to about 500 K and diffuses out for temperatures above. We calculate 0.5 eV for the migration energy of interstitial Li and 1.38 eV for the binding energy of substitutional Li.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Haase, M. A., Qiu, J., DePuydt, J. M., and Cheng, H., Appl. Phys. Lett. 59 (11), p. 1272 (1991).Google Scholar
2. Kim, M.-D., Kim, B.-J., Jeon, M.-H., Ji, J.-K., Lee, S.-D., Oh, E.-S., Kim, J.-S., Park, H.-S., and Kim, T.-I., J. Cryst. Growth 175/176, p. 637 (1997).Google Scholar
3. Ohkawa, K., Mitsuju, T., and Yamazaki, O., J. Appl. Phys. 62 (8), p. 3216 (1987).Google Scholar
4. Yao, T., and Zhu, Z., Phys. stat. sol. (b) 187 p. 387 (1995).Google Scholar
5. Behringer, M., Bäume, P., Gutowski, J., and Hommel, D., Phys. Rev. B. 97, p.12869 (1998).Google Scholar
6. DePuydt, J. M., Haase, M. A., Cheng, H., and Potts, J. E., Appl. Phys. Lett. 55 (11), p. 1103 (1989).Google Scholar
7. Walker, C. T., DePuydt, J. M., Haase, M. A., Qiu, J., and Cheng, H., Physica (Utrecht) 185B p. 27 (1993).Google Scholar
8. Cheng, H., DePuydt, J. M., Potts, J. E., and Haase, M. A., J. Cryst. Growth 95 p. 512 (1989).Google Scholar
9. Qiu, J., DePuydt, J. M., Cheng, H., and Haase, M. A., Appl. Phys. Lett. 59 (23) 2993 (1991).Google Scholar
10. Wahl, U., and ISOLDE Collaboration, Phys. Rep. 280, p. 145 (1997).Google Scholar
11. Jahn, S.G., Wahl, U., Restle, M., Quintel, H., Hofsäss, H., Wienecke, M., Trojahn, I., and the ISOLDE-Collaboration, Mat. Sci. Forum 196–201 p. 315 (1995).Google Scholar
12. Hofsäss, H. and Lindner, G., Phys.Rep. 201, p. 123 (1991).Google Scholar
13. Kugler, E., Fiander, D., Jonson, B., Haas, H., Przewloka, A., Ravn, H. L., Simon, D. J. and Zimmer, K., Nucl. Instr. Meth. B 70, p. 41 (1992).Google Scholar
14. Dalmer, M., Restle, M., Sebastian, M., Vetter, U., Hofsäss, H., Bremser, M. D., Ronning, C., Davis, R. F., Wahl, U., Bharuth-Ram, K., ISOLDE- Collaboration, J. Appl. Phys. 84, 3085 (1998).Google Scholar
15. Wahl, U., Hofsäss, H., Jahn, S., Winter, S. and Recknagel, E., Nucl. Instr. Meth. B 64, p. 221 (1992).Google Scholar
16. Smulders, P. J. M. and Boerma, D.O., Nucl. Instr. Meth B 29, p. 471 (1987).Google Scholar
17. Wahl, U., Jahn, S. G., Restle, M., Ronning, C., Quintel, H., Bharuth-Ram, K., Hofsdss, H., ISOLDE- Collaboration, Nucl. Instr. Meth B 118, p. 76 (1996).Google Scholar
18. Ziegler, J. F., Biersack, J. P. and Littmark, U., TheStopping and Range of Ions in Solids, (Pergamon, New York, 1985).Google Scholar
19. Katayama-Yoshida, H., Sasaki, T., and Oguchi, T., J. Cryst. Growth 117 p.625 (1992).Google Scholar
20. Walle, C G. Van de, Laks, D. B., Neumark, G. F., and Pantelides, S. T., Phys. Rev. B 47 (15), p. 9425 (1993).Google Scholar
21. Lee, K. M., Dang, Le Si, and Watkins, G. D., Inst. Phys. Conf. Ser. No 57 p.353 (1981)Google Scholar
22. Robinson, M. T., Phys. Rev. B 40 p. 10717 (1989).Google Scholar
23. Watkins, D. in Defect Control in Semiconductors, edited by Sumino, K. (North Holland, Amsterdam 1990) p. 993.Google Scholar