Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T07:00:52.272Z Has data issue: false hasContentIssue false

Layered Nanostructures – Electronic and Mechanical Properties

Published online by Cambridge University Press:  11 July 2013

Gotthard Seifert
Affiliation:
Physical Chemistry, Technical University Dresden, 01062 Dresden, Germany
Tommy Lorenz
Affiliation:
Physical Chemistry, Technical University Dresden, 01062 Dresden, Germany
Jan-Ole Joswig
Affiliation:
Physical Chemistry, Technical University Dresden, 01062 Dresden, Germany
Get access

Abstract

In addition to graphene, 2D transition-metal chalcogenides as, e.g., MoS2 and WS2 nanostructures are promising materials for applications in electronics and mechanical engineering. Though the structure of these materials causes a highly inert surface with a low defect concentration, defects and edge effects can strongly influence the properties of these nanostructured materials. Therefore, a basic understanding of the interplay between electronic and mechanical properties and the influence of defects, edge states and doping is needed. We demonstrate on the basis of atomistic quantum-chemical simulations of a circular MoS2 platelet, how the mechanical deformation can vary the electronic properties and other device characteristics of such a system.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fivaz, R. and Mooser, E., Phys. Rev. 163 (1967), 743.CrossRefGoogle Scholar
Joensen, P., Frindt, R. F., and Morrison, S. R., Mater. Res. Bull. 21 (1986), 457.CrossRefGoogle Scholar
Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., Geim, A. K., Proc. Nat. Acad. Sci. U.S.A. 102 (2005), 10451.CrossRefGoogle Scholar
Li, T. and Galli, G., J. Phys. Chem. C 111 (2007), 16192.CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A., Nature Nanotechnol. 6 (2011), 147.CrossRefGoogle Scholar
Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Rosentsveig, R., Seifert, G., and Tenne, R., J. Mater. Res. 19 (2004), 454.CrossRefGoogle Scholar
Bertolazzi, S., Brivio, J., and Kis, A., ACS Nano 5 (2011), 9703.CrossRefGoogle Scholar
Porezag, D., Frauenheim, T., Köhler, T., Seifert, G., and Kaschner, R., Phys. Rev. B 51 (1995), 12947.CrossRefGoogle Scholar
Seifert, G., Porezag, D., and Frauenheim, T., Int. J. Quantum Chem. 58 (1996), 185.3.0.CO;2-U>CrossRefGoogle Scholar
Seifert, G. and Joswig, J.-O., Wiley Interdisc. Rev.: Comput. Mol. Sci. 2 (2012), 456.Google Scholar
Köster, A. M., Geudtner, G., Goursot, A., Heine, T., Vela, A., Salahub, D., and Patchkovskii, S., deMon; NRC: Ottawa, Canada, 2004.CrossRefGoogle Scholar
Föppl, A. and Föppl, L., Drang und Zwang, München (1920), 1 st Ed., p. 175.Google Scholar
Neek-Amal, M. and Peeters, F. M., Phys. Rev. B 81 (2010), 235421.CrossRefGoogle Scholar
Feldman, J. L., J. Phys. Chem. Solids 37 (1976), 1141.CrossRefGoogle Scholar