Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T04:16:32.724Z Has data issue: false hasContentIssue false

Lattice Orientations of Evaporated Metals onto Uniaxially Oriented, Semicrystalline, Ultra thin Polymer Films

Published online by Cambridge University Press:  25 February 2011

Klaus D. Jandt
Affiliation:
Technische Universität Hamburg-Harburg, Kunststoffe /Polymerc Verbundwerkstoffe, Denickestrafie 15, W-2100 Hamburg 90, Germany.
Maren Buhk
Affiliation:
Technische Universität Hamburg-Harburg, Kunststoffe /Polymerc Verbundwerkstoffe, Denickestrafie 15, W-2100 Hamburg 90, Germany.
Jürgen Petermann
Affiliation:
Technische Universität Hamburg-Harburg, Kunststoffe /Polymerc Verbundwerkstoffe, Denickestrafie 15, W-2100 Hamburg 90, Germany.
Lukas M. Eng
Affiliation:
Université de Genéve, Groupe de Physique Appliquée Biomédicale, 20, Rue de 1acute; École de Médecine, CH-1211 Genéve 4, Switzerland.
Harald Fuchs
Affiliation:
BASF AG, ZKM / T - J 543, W-6700 Ludwigshafen, Germany.
Get access

Abstract

The textured oriented overgrowth (epitaxy) of certain metals evaporated onto substrates consisting of highly oriented ultra thin polymer films of polyethylene (PE), polypropylene (PP) and polybutene-1 (PB-1) has been well known since a few years. However, the origin of the observed epitaxy is not clear at all: graphoepitaxy (i. e. orientation induced by nucleation onto oriented topographic features of the substrate), the formation of a chemical layer (i. e. of metal-methyl groups building up the polymer-metal interface, or simply classic epitaxy (i.e. lattice matching) seem all to be possible explanations for the observed orientations. Here, we used Transmission Electron Microscopy (TEM) and Scanning Force Microscopy (SFM) to investigate the possibility of graphoepitaxial growth on polymeric surfaces. Our investigations show that the morphology of polymeric bulk material determine the topographic properties observed at the polymer surface. The semicrystalline nature of the polymer films leads to polymeric surface steps which are suitable as locations for graphoepitaxial growth. Artificial epitaxy (graphoepitaxy) seems to be the most likely orientation mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beneking, H., Halbleiter-Technologie, (Teubner, Stuttgart, 1991), p. 88149.Google Scholar
[2] Matthews, J. W., Epitaxial Growth, (Academic Press, New York, London, Toronto, Sydney, San Francisco, 1975).Google Scholar
[3] Petermann, J., Broza, G., J. Mater. Sci. 22, 1108 (1987).Google Scholar
[4] Schultz, J. M., Peneva, S. K., Polym, J.. Sci. Part B: Polym. Phys. 25, 185 (1987).Google Scholar
[5] Geis, M. W., Flanders, D. C., Smith, H. I., Appl. Phys. Lett. 35, 71 (1979).Google Scholar
[6] Jung, M., Baston, U., Steiner, P., Petermann, J., J. Mater. Sci. 26, 5467 (1991).Google Scholar
[7] Schultz, J. M., Peneva, S. K., RHEED Investigation of Thin Tin Films on Polypropylene. APS-meeting Bulletin, Las Vegas, 511 (1986).Google Scholar
[8] Hoffmann, T., Ph. D. Thesis, Technische Universität Hamburg-Harburg (Germany) Arbeitsbereich Kunststoffe / Polymere Verbundwerkstoffe, 1992.Google Scholar
[9] Petermann, J., Gohil, R. M., J. Mater. Sci. 14, 2260 (1979).CrossRefGoogle Scholar
[10] Wunderlich, B., Macromolecular Physics. Vol. 1: Crystal Structure, Morphology, Defects. (Academic Press, New York, London, Toronto, Sydney, San Francisco, 1973).Google Scholar
[11] Binnig, G., Quate, C. F., Gerber, C. H., Phys. Rev. Lett. 56, 930 (1986).Google Scholar
[12] Fuchs, H., Eng, L. M., Sander, R., Petermann, J., Jandt, K. D., Hoffmann, T., Polym. Bull. 26, 95 (1991).Google Scholar
[13] Jandt, K. D., Buhk, M., Petermann, J., Eng, L. M., Fuchs, H., Polym. Bull. 27, 101 (1991).Google Scholar
[14] Eng, L. M., Fuchs, H., Jandt, K. D., Petermann, J., Imaging Poly(1-Butene) Films by SFM/STM “Scanned Probe Microscopy”, Ed.: Kumar Wickramasinghe, H., Santa Barbara, CA April 1991, AIP Conf. Proc. Series 241 (1991), 262.Google Scholar
[15] Eng, L. M., Fuchs, H., Jandt, K. D., Petermann, J., Investigating Poly(l-Butene) Films by SFM/STM. ST '91, 6th Int. Conf. on STM, Interlaken, Switzerland, Aug. 12–16 1991; Proceedings in : J. Ultramicroscopy, 42–44 (1992), 989.Google Scholar
[16] Jandt, K. D., Eng, L. M., Petermann, J., Fuchs, H., Polym. Com., in press (1992).Google Scholar
[17] Eng, L. M., Jandt, K. D., Fuchs, H., Petermann, J., Paper submitted.Google Scholar
[18] Osaka, T., Kawana, T., Noijiama, T., Heinemann, K., J. Cryst. Growth 61, 509 (1983).Google Scholar
[19] Osaka, T., Kasukabe, Y., Nakamura, H., J. Cryst. Growth 69, 149 (1984).CrossRefGoogle Scholar
[20] Osaka, T., Kasukabe, Y., J. Cryst. Growth 73, 10 (1985).CrossRefGoogle Scholar
[21] Kasukabe, Y., Osaka, T., Thin Solid Films 146, 175 (1987).CrossRefGoogle Scholar
[22] Keller, A., Philos. Mag. 2, 1171 (1957).CrossRefGoogle Scholar
[23] Osaka, T., Kasukabe, Y., Graphoepitaxy of Thin Films on a Monoatomic Step, in: Proceedings of the First Topical Meeting on Crystal Growth Mechanisms, (Izu Nagaoka, Japan (1989)), 8790.Google Scholar
[24] Jandt, K. D., Ph. D. Thesis, Technische Universität Hamburg-Harburg (Germany) Arbeitsbereich Kunststoffe / Polymere Verbundwerkstoffe, 1992.Google Scholar
[25] Hill, M. J., Barham, P. J., Keller, A., Polym. Sci. 258, 1023 (1980).Google Scholar
[26] Hill, M. J., Keller, A., Colloid Polym. Sci. 259, 335 (1981).Google Scholar
[27] Klews, P.-M., Anton, R., Harsdorff, M., J. Cryst. Growth 71, 491 (1985).Google Scholar
[28] Klews, P.-M., Anton, R., Harsdorff, M., J. Vac. Sci. Technol. A 5 (4), 1931 (1987).Google Scholar
[29] Dolezel, B., Die Beständigkeit von Kunststoffen und Gummi. Carl Hanser Verlag, München Wien (1978), 392.Google Scholar