Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T21:53:40.743Z Has data issue: false hasContentIssue false

Lattice Location of Deuterium in Plasma and Gas Charged Mg Doped GaN

Published online by Cambridge University Press:  03 September 2012

W. R. Wampler
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
J. C. Barbour
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
C. H. Seager
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
S. M. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
A. F. Wright
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
Get access

Abstract

We have used ion channeling to examine the lattice configuration of deuterium in Mg doped GaN grown by MOCVD. The deuterium is introduced by exposure to gas phase or ECR plasmas. A density functional approach including lattice relaxation, was used to calculate total energies for various locations and charge states of hydrogen in the wurtzite Mg doped GaN lattice. Results of channeling measurements are compared with channeling simulations for hydrogen at lattice locations predicted by density functional theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pearton, S. J., Zolper, J. C., Shul, R. J. and Ren, F., J. Appl. Phys. 86 (1999) 1.Google Scholar
2 Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N., Jpn. J. Appl. Phys. Part 2, 31 (1992) L139.Google Scholar
3 Myers, S. M. et al. These proceedings.Google Scholar
4 Inamori, M., Sakai, H., Tanaka, T., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. Part 1, 34 (1995) 1190.Google Scholar
5 Li, X. and Coleman, J.J., Appl. Phys. Lett. 69 (1996) 1605.Google Scholar
6 Pearton, S.J., Lee, J.W. and Yuan, C., Appl. Phys. Lett. 68 (1996) 2690.Google Scholar
7 Miyachi, M., Tanaka, T., Kimura, Y. and Ota, H., Appl. Phys. Lett. 72 (1998) 1101.Google Scholar
8 Feldman, L. C., Mayer, J. W. and Picraux, S. T., Materials Analysis by Ion Channeling, (Academic, New York, 1982), pp. 88135.Google Scholar
9 Han, J., Ng, T. B., Biefeld, R. M., Crawford, M. H., and Follstaedt, D. M.. Appl. Phys Lett. 71, 3114 (1997).Google Scholar
10 Götz, W., Johnson, N.M., Walker, J., Bour, D.P., Amano, H. and Akasaki, I., Appl. Phys. Lett. 67 (1995) 2666.Google Scholar
11 Outten, C.A., Barbour, J.C. and Wampler, W.R., J. Vac. Sci. Technol. A9 (1991) 717.Google Scholar
12 Myers, S.M., Caskey, G.R., Rawl, D.E., and Sisson, R.D., Metall. Trans. 14A (1983) 2261.Google Scholar
13 Goetz, W., Johnson, N.M., Bour, D.P., McCluskey, M.D. and Haller, E.E., Appl. Phys. Lett. 69 (1996) 3725.Google Scholar
14 Ziegler, J.F., Biersack, J.P. and Littmark, U.L., The stopping and Range of Ions in Matter, Vol. 1, Pergamon Press (1985) New York.Google Scholar
15 Klein, C.A., J. Appl. Phys. 39 (1968) 2029.Google Scholar
16 Wright, A.F., Phys. Rev. B60, (1999) 5101.Google Scholar
17 Bech-Nielsen, B., Phys. Rev. B37, 6353 (1988).Google Scholar
18 Doyle, P. A. and Turner, P. S., Acta Crystalogr. Sect.A 24, 390 (1968).Google Scholar
19 Yoshiasa, A., Koto, K., Maeda, H. and Ishii, T., Jpn. J. Appl. Phys. 36, 781 (1997).Google Scholar