Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T13:25:47.723Z Has data issue: false hasContentIssue false

Lattice Location and Photoluminescence of Er in GaAs and Al0.5Ga0.5As

Published online by Cambridge University Press:  21 February 2011

E. Alves
Affiliation:
Departamento de Ffsica, ICEN/LNETI, Estrada Nacional n° 10, 2685, Sacavém, Portugal
M.F. Da Silva
Affiliation:
Departamento de Ffsica, ICEN/LNETI, Estrada Nacional n° 10, 2685, Sacavém, Portugal
A. A. Melo
Affiliation:
Centro de Física Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699, Lisboa Codex, Portugal
J.C. Soares
Affiliation:
Centro de Física Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699, Lisboa Codex, Portugal
G.N. Van Den Hoven
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
A. Polman
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
K.R. Evans
Affiliation:
Wright Laboratory, Solid State Electronics Directorate (WL/ELRA) Wright - Patterson Air Force Base, OHIO 45433 - 6543, USA
C.R. Jones
Affiliation:
Wright Laboratory, Solid State Electronics Directorate (WL/ELRA) Wright - Patterson Air Force Base, OHIO 45433 - 6543, USA
Get access

Abstract

Epitaxial Er-doped GaAs and Al0.5Ga0.5As films, 1.6 μm thick, grown by MBE on (100) GaAs substrates at 560°C, with Er concentrations in the range 9 × 1017 to 2 × 1020 cm−3 were studied with RBS/channeling and photoluminescence techniques. Angular scans in the <110> and <111> axial and (111) planar directions indicate that the Er atoms in GaAs are located on interstitial sites. In Al0.5Ga0.5As doped with 5 × 1019 Er cm−3, 70% of the Er atoms are on positions slightly displaced from the interstitial site, the rest presumably substitutional. In Al0.5Ga0.5As doped with 9 × 19 Er cm−3, more than 88% of the Er atoms are on substitutional sites.

Photoluminescence around 1.54 μm is observed at room-temperature in Er-doped Al0.5Ga0.5As. Both the low and highly Er-doped samples show similar luminescence intensities; the luminescence lifetimes are on the order of 1 ms. The Er-doped GaAs does not show any measurable signal at room-temperature. Correlation of the luminescence data to the Er lattice location suggests that only substitutional Er in AlGaAs is in the luminescent trivalent state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Polman, A., Custer, J. S., Snoeks, E., and Hoven, G. N. van den, Appl. Phys. Lett. 62 (1993) 507.Google Scholar
[2] Benyattou, T., Seghier, D., Guillot, G., Moncorge, R., Galtier, P., and Charasse, M. N., Appl. Phys. Lett. 60 (1992) 350 and 58 (1991) 2132.Google Scholar
[3] Klein, P. B., Moore, F. G., and Dietrich, H. B., Appl. Phys. Lett. 58 (1991) 502.Google Scholar
[4] Bantien, F., Bauser, E. and Weber, J., J. Appl. Phys. 61 (1987) 2803.Google Scholar
[5] Kozanecki, A. and GröOetzchel, R., J. Appl. Phys. 64 (1988)3315.Google Scholar
[6] Kozanecki, A. and Gröetzchel, R., J. Appl. Phys. 68 (1990) 517.Google Scholar
[7] Kozanecki, A., Chan, M., Jeynes, C., Sealy, B. and Homewood, K., Solid State Commun. 78 (1991) 763.Google Scholar
[8] Gemot Pomrenke, S., Ennen, H. and Haydl, W., J. Appl. Phys. 59 (1986) 601.Google Scholar
[9] Ennen, H., Wagner, J., Muller, H.D. and Smith, P.S., J. Appl. Phys. 61 (1987) 4877.Google Scholar
[10] Takahei, Kenichiro, Whitney, Peter S., Nakagome, Hiroshi and Uwai, Kunihiko, J. Appl. Phys. 65 (1989) 1257.Google Scholar
[11] Silva, M.F. da, Silva, M.R. da, Alves, E., Melo, A., Soares, J.C., Winand, P.M.J. and Vianden, R., in Surface Engineering, NATO Advanced Study Institute, Ed. Kossowsky, R. and Singhal, S.C., Martinus Nijhoff Publisher (1984) pg. 74.Google Scholar
[12] Rebouta, L., Silva, M. F. da, Soares, J. C., Smulders, P. J. M., Boerma, D. O., and Agullo-Lopez, F., Phys. Rev. B in press.Google Scholar
[13] Melchior, H., in Laser Handbook, Vol. 1, edited by Arecchi, F. T. and Schulz-Dubois, E. O. (North-Holland, Amsterdam, 1972) pp. 725835.Google Scholar
[14] Lindhard, J., Vidensk, K. Dan.. Selsk. Mat. Fys. Medd. 34 (1965) No. 14.Google Scholar
[15] Vliet, D. Van, Rad. Effects 10 (1971) 137.Google Scholar
[16] Mayer, J.W. and Rimini, E., Ion Beam Handbook for Material Analysis (Academic Press, New York, 1977).Google Scholar
[17] Dygo, A. and Turos, A., Phys. Rev. B40 (1989) 7704.Google Scholar
[18] Smulders, P.J.M., Boerma, D.O. and Shaanan, M., Nucl. Inst. and Meth. B45 (1990)Google Scholar