Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T16:22:00.743Z Has data issue: false hasContentIssue false

Lateral Variation in the Schottky Barrier Height and Observation of Critical Lengths at Au/PtSi/(100)Si and Au/(100)GaAs Diodes

Published online by Cambridge University Press:  25 February 2011

A. Alec Talin
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center University of California Los Angeles, Los Angeles, CA 90024-1569
Tue Ngo
Affiliation:
Department of Physics and Solid State Science Center University of California Los Angeles, Los Angeles, CA 90024
R. Stanley Williams
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center University of California Los Angeles, Los Angeles, CA 90024-1569
Brent A. Morgan
Affiliation:
Department of Electrical and Computer Engineering University of California, San Diego, La Jolla CA 92093-0407
Ken M. Ring
Affiliation:
Department of Electrical and Computer Engineering University of California, San Diego, La Jolla CA 92093-0407
Karen L. Kavanagh
Affiliation:
Department of Electrical and Computer Engineering University of California, San Diego, La Jolla CA 92093-0407
Get access

Abstract

Lateral variations in the Schottky barrier height (SBH) formed at Au/PtSi/(100)Si and Au/(100)GaAs diodes were measured on length scales ranging from a few to several hundred nanometers using ballistic electron emission microscopy (BEEM). All of the contacts investigated showed SBH spatial inhomogeneity. The most severe SBH variations observed were 0.09eV/0.7nm in Au/(100)GaAs contacts and 0.08eV/14nm for Au/PtSi/(100)Si contacts. Based on the lateral maps of the SBH at each interface, the difference between the locally averaged SBH and the globally averaged BEEM SBH was computed. This analysis showed that there is a critical diode length scale below which the SBH deviates significantly from the SBH averaged over a macroscopic length scale. This result implies that the uniformity of electrical characteristics of arrays of small devices (e.g.. PtSi/Si photodetectors and GaAs FET gates) can be expected to deteriorate significantly when device dimensions decrease below the critical length.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chang, S., Raisanen, A., Brillson, L. J., Shaw, J. L., Kirchner, P. D., Pettit, G. D., and Woodall, J. M., J. Vac. Sci. Technol. B 10 1932 (1992).Google Scholar
2 Werner, J. H. and Güttler, H. H., J. Appl. Phys. 69,1522 (1991).Google Scholar
3 Tung, R. T., Phys. Rev. B 45,13509 (1992).Google Scholar
4 Bell, L. D. and Kaiser, W. J., Phys. Rev. Lett. 61,2368 (1988).Google Scholar
5 Talin, A. A., Williams, R. S., Morgan, B. A., Ring, K. M., and Kavanagh, K. L., J. Vac. Sci. Technol. B, in pressGoogle Scholar
6 Niedermann, P., Quattropani, L., Solt, K., Kent, A. D. and Fischer, Ø., J. Vac. Sci. Technol. B 10 580 (1992).Google Scholar
7 Fowell, A. E., Williams, R. H., Richardson, B. E., Cafolla, A. A., Westwood, D. I., and Woolf, D. A., J. Vac. Sci. Tecnol. B 9, 581 (1991).Google Scholar
8 Talin, A. A., Williams, R. S., and Kavanagh, K. L., Mater. Res. Soc. Proc. 281, 653 (1993).Google Scholar
9 Palm, H., Arbes, M., and Schulz, M., Phys. Rev. Lett. 71, 2224 (1993).CrossRefGoogle Scholar
10 Kavanagh, K. L., Talin, A. A., Morgan, B. A., Williams, R. S., and Ring, K., Proceedings of the First International Symposium on Control of Semiconductor Interfaces, Karuizawa, Japan (1993).Google Scholar
11 Talin, A. A., Williams, R. S., Morgan, B. A., Ring, K. M., and Kavanagh, K. L., Phys. Rev. B, in press.Google Scholar
12 Talin, A. A., Ohlberg, D. A. A., Williams, R. S., Sullivan, P., Koutselas, I., Williams, B., and Kavanagh, K. L., Appl. Phys. Lett. 62, 2965 (1993).Google Scholar
13 Freeouf, J. L., Jackson, T. N., Laux, S. E., and Woodall, J. M., Appl. Phys. Lett. 40, 634 (1982).Google Scholar
14 Sze, S. M., Physics of Semiconductor Devices, Wiley, New York (1981).Google Scholar