Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T23:30:15.234Z Has data issue: false hasContentIssue false

Laser-Controlled Etching Of Chromium-Doped and N-Doped <100> Gaas*

Published online by Cambridge University Press:  15 February 2011

Gary C. Tisone
Affiliation:
Sandia National Laboratories, Division 1126, Albuquerque, NM 87185, USA
A. Wayne Johnson
Affiliation:
Sandia National Laboratories, Division 1126, Albuquerque, NM 87185, USA
Get access

Abstract

The photochemical etching of chromium-doped and n-doped <100> GaAs in HNO3 and KOH is examined in the wavelength region of 334 to 514 nm from an argon-ion laser. The etching process is found to be not thermally controlled. The etch rates of chromium-doped GaAs agree with a diffusion-controlled model of the photochemically produced holes. For both types of GaAs, HNO3 is found to produce morphologically superior results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work performed at Sandia National Laboratories supported by the U.S. Department of Energy under contract number DE–AC04–76DP00789, for the Office of Basic Energy Science.

References

REFERENCES

1 Kern, Werner and deckert, Cheryl A., “Chemical Etching”, in Thin Film Processes, edited by Vosen, John L. and Kern, Werner, (Academic, New York, 1978), pp. 401–96.CrossRefGoogle Scholar
2 Kuhn-Kuhnenfeld, F., J. Electrochem. Soc. 119, 1063 (1972).Google Scholar
3 Yamamoto, Akio and Yano, Soichi, J. Electrochem. Soc. 122, 260 (1975).CrossRefGoogle Scholar
4 Lubzens, D., Electronics Letters 13 (7), 171 (1977).CrossRefGoogle Scholar
5 Alferov, Zh., Goyrachev, D. N., Gurevich, S. A., Mizerov, M. N., Portnoi, E. L., and Ryvkin, B. S., Sov. Phy. Tech. Phys. 21, 857 (1976).Google Scholar
6 Gerischer, Heinz, J. Vac. Sci. Tchnol. 15 (14), 1422 (1978).CrossRefGoogle Scholar
7 Shimano, Ako, Takagi, Hiromitsu and Kano, Gota, IEEE Trans. Electron Devices, ED–26 8119, 1680 (1979).Google Scholar
8 Hoffmann, H. J., Woodall, J. M. and Chappell, T. I., appl. Phys. Lett. 38 (7), 564 (1981).CrossRefGoogle Scholar
9 Ostermaymer, F. W. Jr. and Kohl, P. A., Appl. Phys. Lett.Google Scholar
10 Haynes, R. W., Metze, G. M., Kreismanis, V. G., and Eastman, L. F., Appl. Phys. Lett. 37 (4), 344 (1980).CrossRefGoogle Scholar
11 Osgood, R. M. Jr., Sanchez-Rubio, a., Ehrlinch, D. J. and Daneu, V, Appl. Phys. Lett. 40 (5), 391 (1982).CrossRefGoogle Scholar
12 Ehrenreich, H. and Philipp, H. R., Phys. Rev. Lett. 8 (2), 59 (1962).CrossRefGoogle Scholar
13 Philipp, H. R., and Ehrenreich, H., Phys. Rev. 129 (4), 1550 (1963).CrossRefGoogle Scholar
14 Morrison, Robert E., Phys. Rev. 124 (5), 1314 (1961).CrossRefGoogle Scholar
15 Seraphin, B. O. and Bennett, H. E., “Optical Constants“, in Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, Albert C. (Academic, New York, 1967) pp. 499545.Google Scholar
16 Park, Su-Moon and Barber, Matthew E., J. Electroanal. Chem. 99, 67 (1979).CrossRefGoogle Scholar