Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-01T15:09:31.367Z Has data issue: false hasContentIssue false

Laser Irradiation of Ge(100): An Assessment of Surface Order with He Diffraction

Published online by Cambridge University Press:  25 February 2011

W. R. Lambert
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey07974
P. L. Trevor
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey07974
M. T. Schulberg
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey07974
M. J. Cardillo
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey07974
J. C. Tully
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey07974
Get access

Abstract

We investigate the effects of Nd:YAG and excimer laser irradiation on the Ge(100) surface under UHV conditions over a temperature range 140 < T(K) < 300 using the surface sensitive probe of He atom diffraction. We study the effects of irradiation on surface damage and order using the apparent (2×1) ࢐ c(2×4) transition. We monitor surface contamination in situ. The temporal thermal response is modeled theoretically to aid in assessing the experimental results. The capability to maintain a Ge(100) surface at low temperatures free of contamination and well ordered is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Zehner, D.M. and White, C. W., ”Laser Solid Interactions and Laser Processing” Ed. Poate, J. M. and Ferris, S. D.; (Academic Press, NY 1982) Cowan, P. L. and Golovchenko, J. A., J. Vac. Sci. Technol., 17, 1197 (1980).Google Scholar
[2] Kevan, S. D. (private communication-to be published).Google Scholar
[3] Jona, F., Shih, H. D., Jepsen, D. W. and Marcus, P. M., J. Phys. C 12, 1455 (1979).Google Scholar
[4] Cardillo, M. J. and Becker, G. E., Phys. ReV. B., 21, 1497 (1980).Google Scholar
[5] Lander, J. J. and Morrison, J., J. Chem. Phys., 37, 729 (1962).Google Scholar
[6] Poppendieck, T. D., Ngoc, T. C. and Webb, M. B., Surface Sci., 75, 287 (1978).Google Scholar
[7] Kuk, Y., private communication.Google Scholar
[8] Chadi, D. J., Phys. Rev. Let., 43, 43 (1979).Google Scholar
[9] Ihm, J., Lee, D. H., Joannopoulos, J. D. and Xiong, J. J., Phys. Rev. Lett., 51, 1872 (1983).Google Scholar
[10] Cardillo, M. J., Ching, C. S. Y., Greene, E. F. and Becker, G. E., J. Vac. Sci. Technol., 15, 423 (1978).Google Scholar
[11] Simple Debye-Waller formulae generally do not fit He diffraction results well, in part as the result of scattering resonances from bound states. These, however, are weak for both the Si(lOO) and Ge(100) surfaces due to the presence of disorder.Google Scholar
[12] Baeri, P. and Campisano, S. U., “Laser Annealing of Semiconductors” Ed. Poate, J. M. and Mager, J. W. (Academic Press, NY 1982).Google Scholar
[13] Smith, R. C., J. Appl. Phys. 37, 4860 (1966) Glasov, V. M., Chizheuskaya, S. N. and Clagoleva, N. N., 'Liquid Semiconductors', (Plenum, NY 1969).Google Scholar
[14] Glazov, V. M., Auivazov, A. A. and Pavlor, V. G., Soviet Phys. Semiconductors, 5, 1982 (1971).Google Scholar
[15] Aspnes, D. (private communication).Google Scholar
[16] Surko, C. M., Simons, A. L., Auston, D. H., Golovchenko, J. A., Slusher, R. E. and Venkatesan, T. N. C., Appl. Phys. Lett. 34, 635 (1979).Google Scholar