Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-24T12:34:47.919Z Has data issue: false hasContentIssue false

Laser Induced Surface Chemical Epitaxy of II-VI Materials

Published online by Cambridge University Press:  21 February 2011

Charter D. Stinespring
Affiliation:
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., Billerica, Massachusetts 01821
Andrew Freedman
Affiliation:
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., Billerica, Massachusetts 01821
Get access

Abstract

Studies of the thermal and photon-induced surface chemistry of dimethyl cadmium (DMCd) and dimethyl tellurium (DMTe) on GaAs(100) substrates under ultrahigh vacuum conditions have been performed for substrate temperatures in the range of 123 K to 473 K. Results indicate that extremely efficient conversion of admixtures of DMTe and DMCd to CdTe can be obtained using low power (5 - 10 mJ cm−2) 193 nm laser pulses at substrate temperatures of 123 K. Subsequent annealing at 473 K produces an epitaxial film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. O'Neill, J.A., Shaw, P., Sanchez, E., Wu, Z. and Osgood, R.M. Jr., “Surface Spectroscopic Studies of Organometallic Deposition,” Mat. Res. Soc. Symp., Vol. 129, (1989).Google Scholar
2. Zinck, J.J., Brewer, P.D., Jensen, J.E., Olsen, G.L. and Tuh, L.W., Appl. Phys. Lett. 52, 1434 (1988); J.B. Mullin and S.J.C. Irvine, J. Vac. Sci. Technol. A4, 700 (1986)Google Scholar
3. Tokumitsu, E., Kurow, Y., Kanogai, M. and Takahashi, K., J. Appi. Phys. 55, 3163 (1984).Google Scholar
4. Stinespring, C.D. and Freedman, A., Chem. Phys. Lett 143, 584 (1988).Google Scholar
5. Stinespring, C.D. and Freedman, A., Appl. Phys. Lett. 52, 1959 (1988).Google Scholar
6. Wood, R.A. and Hager, R.J., J. Vac. Sci. Technol. A1, 1608 (1983).Google Scholar
7. Jonah, C., Chandra, P., and Bersohn, R., J. Chem Phys. 55, 1903 (1971), C.F. Yu, F. Youngs, K. Tsukiyama, R. Bersohn, and J. Preses, J. Chem. Phys. 85, 1382 (1986).Google Scholar
8. Chen, C.J. and Osgood, R.M., J. Chem. Phys. 81, 327 (1984).Google Scholar
9. Brewer, P.D., Jensen, J.E., Olsen, G.L., Tutt, L.W. and Zinck, J.J., Proc. Mat. Res. Soc. Symp. 101, 327 (1988); P.D. Brewer, Chem. Phys. Lett., 141, 301 (1987).Google Scholar
10. Donnelly, V.M., McCaulley, J.A., McCrary, V.R., Tu, C.W. and Beggy, J.C., “Selective Area Growth of GaAs by Laser Induced Pyrolysis of Absorbed Gallium-Alkyls,” Proc. Mat. Res. Soc. Symp., Vol. 129 (1989).Google Scholar
11. Burgess, D., Stair, P.C., and Weitz, E., J. Vac. Sci. Technol. A4, 1362 (1986); P.C. Stair and E. Weitz, J. Opt. Soc. Am. B4, 255 (1987).Google Scholar
12. Kolodziejski, L.A., Gunshor, R.L., Otsuka, N., Datta, S., Becker, W.M. and Nurmikko, A.V., IEEE J. Quantum Electron. QE–22, 1666 (1986).Google Scholar
13. Manuscript in preparation.Google Scholar